
The Zynq Book

Embedded Processing with the
ARM® Cortex®-A9 on the Xilinx®

Zynq®-7000 All Programmable SoC

The Zynq Book

Embedded Processing with the
ARM® Cortex®-A9 on the Xilinx®

Zynq®-7000 All Programmable SoC

Louise H. Crockett

Ross A. Elliot

Martin A. Enderwitz

Robert W. Stewart

Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow, Scotland, UK

1st Edition

This edition first published July 2014 by Strathclyde Academic Media.
© Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz and Robert W. Stewart.

Open Source Licence to Use and Reproduce

This book is available in print and as an electronic book (PDF format).
Text and diagrams from this book may be reproduced in their entirety and used for non-profit academic purposes, provided
that a clear reference to the original source is made in all derivative documents. This reference should be of the following
form:
L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W. Stewart, The Zynq Book: Embedded Processing with the ARM Cortex-
A9 on the Xilinx Zynq-7000 All Programmable SoC, First Edition, Strathclyde Academic Media, 2014.
Requests to use content from this book for other than non-profit academic purposes should be made to info@zynqbook.com.
This book may not be reproduced in its original form and sold by any unauthorised third party.

Tutorial Materials

Tutorial materials are distributed via the book’s companion website: www.zynqbook.com.
The tutorials are provided with the same Open Source License to Use and Reproduce, and the same Warning and Disclaimer, as
detailed elsewhere on this page in reference to the main book.

Warning and Disclaimer

The best efforts of the authors and publisher have been used to ensure that accurate and current information is presented in
this book. This includes researching the topics covered and developing examples. The material included is provided on an “as
is” basis in the best of faith, and neither the authors and publishers make any warranty of any kind, expressed or implied, with
regard to the documentation contained in this book. The authors and publisher shall not be held liable for any loss or damage
resulting directly or indirectly from any information contained herein.

Trademarks

ARM, Cortex, AMBA, Thumb and TrustZone are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/
or elsewhere. All rights reserved.
NEON is a trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
This publication is independent and it is not affiliated with, or endorsed, sponsored or authorised by ARM Limited.
Xilinx, the Xilinx logo, Artix, ISE, Kintex, LogiCORE, Petalogix, Spartan, Virtex, Vivado, Zynq, and WebPACK are registered
trademarks of Xilinx. All rights reserved.
MATLAB and Simulink are registered trademarks of MathWorks, Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
All other trademarks used in this book are acknowledged as belonging to their respective companies. The use of trademarks
in this book does not imply any affiliation with, or endorsement of, this book by trademark owners.

http://www.zynqbook.com

Contents
Foreword xxi

Acknowledgements xxiii

CHAPTER 1 Introduction 1
1.1 System-on-Chip with Zynq .. 2
1.2 Simple Anatomy of an Embedded SoC .. 5
1.3 Design Reuse .. 7
1.4 Raising the Abstraction Level .. 7
1.5 SoC Design Flow .. 8
1.6 Practical Elements ...10
1.7 About This Book ..10
1.8 References ...12

PART A Getting to Know Zynq 13

CHAPTER 2 The Zynq Device (“What is it?”) 15
2.1 Processing System ..16

2.1.1 Application Processing Unit (APU)17
2.1.2 A Note on the ARM Model ...20
2.1.3 Processing System External Interfaces21

2.2 Programmable Logic ...22
vii

2.2.1 The Logic Fabric ... 23
2.2.2 Special Resources: DSP48E1s and Block RAMs 25
2.2.3 General Purpose Input/Output ... 28
2.2.4 Communications Interfaces .. 29
2.2.5 Other Programmable Logic External Interfaces 29

2.3 Processing System — Programmable Logic Interfaces 30
2.3.1 The AXI Standard ... 30
2.3.2 AXI Interconnects and Interfaces 31
2.3.3 EMIO Interfaces .. 34
2.3.4 Other PL-PS Signals ... 34

2.4 Security .. 35
2.4.1 Secure Boot .. 35
2.4.2 Hardware Support .. 36
2.4.3 Runtime Security .. 36

2.5 Zynq-7000 Family Members .. 39
2.6 Chapter Review .. 40
2.7 Architecture Reference Guide ... 41
2.8 References ... 44

CHAPTER 3 Designing with Zynq (“How do I work with it?”) 47
3.1 Getting Started ... 48

3.1.1 Obtaining Design Tools ... 48
3.1.2 Design Tool Editions and Licensing 49
3.1.3 Design Tool Functionality ... 50
3.1.4 Third Party Tools .. 51
3.1.5 System Setup and Requirements 51

3.2 An Outline of the Design Flow .. 53
3.2.1 Requirements and Specification 54
3.2.2 System Design ... 54
3.2.3 Hardware Development and Testing 55
3.2.4 Software Development and Testing 58
3.2.5 System Integration and Testing .. 60

3.3 SoC Design Teams ... 60
3.4 System-Level IP-Focused Design with Vivado 62
3.5 The ISE and Vivado Design Suites ... 64

3.5.1 Features Comparison ... 64
viii

3.5.2 Upgrading to Vivado .. 66
3.6 Development Boards ... 67

3.6.1 Zynq-7000 SoC ZC702 Evaluation Kit 67
3.6.2 Zynq-7000 SoC Video & Imaging Kit 69
3.6.3 Zynq-7000 ZC706 Evaluation Kit 69
3.6.4 ZedBoard .. 69
3.6.5 ZYBO .. 69
3.6.6 Third Party Boards ... 70
3.6.7 Accessories and Expansions .. 71
3.6.8 Working with Development Boards 72

3.7 Support and Documentation ... 72
3.8 Chapter Review .. 72
3.9 References ... 73

CHAPTER 4 Device Comparisons (“Why do I need Zynq?”) 77
4.1 Device Selection Criteria .. 78
4.2 Comparison A: Zynq versus FPGA ... 80

4.2.1 MicroBlaze Processor ... 80
4.2.2 MicroBlaze MicroController System 84
4.2.3 PicoBlaze .. 85
4.2.4 ARM Cortex-M1 ... 85
4.2.5 Other Processor Types ... 85
4.2.6 Summary Comments ... 87

4.3 Comparison B: Zynq versus Standard Processor 89
4.3.1 Processor Operation ... 89
4.3.2 Execution Profiling ... 92
4.3.3 Summary Comments ... 94

4.4 Comparison C: Zynq versus a Discrete FPGA-Processor
Combination .. 94

4.5 Exploiting the Zynq Architecture and Design Flow 96
4.6 Chapter Review .. 98
4.7 References ... 99

CHAPTER 5 Applications and Opportunities
(“What can I do with it?”) 101

5.1 An Overview of Applications ...102
ix

5.1.1 Automotive ..102
5.1.2 Communications ..102
5.1.3 Defence and Aerospace ..103
5.1.4 Robotics, Control and Instrumentation103
5.1.5 Image and Video Processing ...104
5.1.6 Medical ...105
5.1.7 High Performance Computing (HPC)105
5.1.8 Others and Future Applications105

5.2 When Can Zynq Really Help...? ..106
5.3 Communications: Software Defined Radio (SDR)107

5.3.1 Trends in Wireless Communications107
5.3.2 Introducing Software Defined Radio (SDR)108
5.3.3 SDR Implementation and Enabling Technologies108
5.3.4 Cognitive Radio ...110

5.4 Smart Systems and Smart Networks ...111
5.4.1 What is a Smart System? ..111
5.4.2 Examples of Smart Systems ...112
5.4.3 Smart Networks: Communications for Smart Systems 114
5.4.4 Related Concepts ..115

5.5 Image and Video Processing, and Computer Vision115
5.5.1 Image and Video Processing ...115
5.5.2 Computer Vision ..116
5.5.3 Levels of Abstraction ..117
5.5.4 Implementation of Image Processing Systems118
5.5.5 Computer Vision on Zynq Example: Road Sign

Recognition ..120
5.6 Dynamic System-on-Chip ..121

5.6.1 Run Time System Flexibility ...121
5.6.2 Dynamic Partial Reconfiguration (DPR)121
5.6.3 DPR Application Examples ...122
5.6.4 Benefits of DPR ...124

5.7 Further Opportunities: the Zynq ‘EcoSystem’125
5.7.1 What is the Ecosystem? ..125
5.7.2 What is the Opportunity? ..126

5.8 Chapter Review ..128
5.9 References ...128
x

CHAPTER 6 The ZedBoard 133
6.1 Introducing Zed ...133
6.2 ZedBoard System Architecture ..134
6.3 The Design Flow for ZedBoard ...136
6.4 Getting Started with the ZedBoard ...137

6.4.1 What’s in the Box? ..137
6.4.2 Hardware Setup ..137
6.4.3 Programming the ZedBoard ...138

6.5 MicroZed ..142
6.6 Documentation, Tutorials and Support142

6.6.1 Documentation about the ZedBoard142
6.6.2 Demonstrations and Tutorials ..143
6.6.3 Online Courseware ...143
6.6.4 Other ZedBoard Resources and Support144

6.7 ZedBoard.org Community ...144
6.7.1 Community Projects ..144
6.7.2 Blogs ...145
6.7.3 Support Forums ..145

6.8 Chapter Review ..145
6.9 References ...146

CHAPTER 7 Education, Research and Training 147
7.1 Technology Trends and SoC Education148
7.2 University Teaching with Zynq ...149

7.2.1 Teaching with Xilinx Tools and Boards149
7.2.2 Digital Design and FPGA Teaching150
7.2.3 Computer Science ...150
7.2.4 Embedded Systems and SoC Design150
7.2.5 Algorithm Implementation (e.g. Signal, Image, and

Video Processing) ...151
7.2.6 Design Reuse ...152
7.2.7 New and Emerging Design Methods153
7.2.8 Sensing, Robotics, and Prototyping154
7.2.9 An Example Course ..154

7.3 Projects and Competitions ...155
7.4 Academic Research ...156
xi

7.5 The Xilinx University Program (XUP) ...158
7.5.1 Introducing XUP ..158
7.5.2 Software Support and Licenses158
7.5.3 XUP Development and Teaching Boards159
7.5.4 XUP Workshops and Training Materials159
7.5.5 Technical Support for Universities160
7.5.6 Eligibility ..160
7.5.7 Getting in Touch with XUP ..160

7.6 Training for Industry ..160
7.6.1 Courses and Authorised Training Providers160
7.6.2 Other Resources ..161
7.6.3 Online Videos ..161

7.7 Chapter Review ..161
7.8 References ...162

CHAPTER 8 First Designs on Zynq 165
8.1 Software Installation Guide ..166
8.2 Aims and Outcomes ..166
8.3 Overview of Exercise 1A ...166
8.4 Overview of Exercise 1B ...167
8.5 Overview of Exercise 1C ...168
8.6 Possible Extensions ...169
8.7 What Next? ...169
8.8 References ...169

PART B Zynq SoC & Hardware Design 171

CHAPTER 9 Embedded Systems and FPGAs 173
9.1 What is an Embedded System? ..173

9.1.1 Applications ...174
9.1.2 Generic Embedded System Architecture175

9.2 Processors ...176
9.2.1 Co-processors ..177
9.2.2 Processor Cache ..178
9.2.3 Execution Cycles ...180
9.2.4 Interrupts ...183
xii

9.3 Buses ..184
9.3.1 System and Peripheral Buses ...185
9.3.2 Bus Masters and Slaves ..186
9.3.3 Bus Arbitration ...186
9.3.4 Memory Access ...187
9.3.5 Bus Bandwidth ..188

9.4 Chapter Review ..189
9.5 References ...189

CHAPTER 10 Zynq System-on-Chip Design Overview 191
10.1 Interfacing and Signals ...192

10.1.1 PS-PL AXI Interfaces ...192
10.1.2 PL Co-Processing Interfaces ...193
10.1.3 Interrupt Interface ..196

10.2 Interconnects ..197
10.2.1 Interconnect Features ..197
10.2.2 Interconnects, Masters and Slaves198
10.2.3 Connectivity ..199
10.2.4 AXI_HP Interfaces ...200
10.2.5 AXI_ACP Interface ..202
10.2.6 AXI_GP Interfaces ..202

10.3 Memory ...202
10.3.1 Memory Interfaces ..203
10.3.2 On-Chip Memory (OCM) ...208
10.3.3 Memory Map ...210

10.4 Interrupts ..211
10.4.1 Interrupt Signals ...212
10.4.2 Generic Interrupt Controller (GIC)212
10.4.3 Interrupt Sources ..213
10.4.4 Interrupt Prioritisation and Handling217
10.4.5 Further Reading ..218

10.5 Chapter Review ..219
10.6 References ...219

CHAPTER 11 Zynq System-on-Chip Development 221
11.1 Hardware/Software Partitioning ...221
xiii

11.2 Profiling ..224
11.3 Software Development Tools ...226

11.3.1 Software Tools ...226
11.3.2 Hardware Configuration Tools227
11.3.3 Software Development Kit (SDK)228
11.3.4 Microprocessor Debugger ...228
11.3.5 Sourcery CodeBench Lite Edition for Xilinx

Cortex-A9 Compiler Toolchain229
11.3.6 Logic Analysers ...229
11.3.7 System Generator for DSP ...229

11.4 Chapter Review ..230
11.5 References ...230

CHAPTER 12 Next Steps in Zynq SoC Design 231
12.1 Prerequisites ...231
12.2 Aims and Outcomes ..232
12.3 Overview of Exercise 2A ...232
12.4 Overview of Exercise 2B ...232
12.5 Overview of Exercise 2C ...233
12.6 Overview of Exercise 2D ...234
12.7 Possible Extensions ...235
12.8 What Next? ...236

CHAPTER 13 IP Block Design 237
13.1 Overview ...237
13.2 Industry Trends and Philosophy ...239
13.3 IP Core Design Methods ..240

13.3.1 HDL ..240
13.3.2 System Generator ..241
13.3.3 HDL Coder ..241
13.3.4 Vivado High-Level Synthesis ..243
13.3.5 Choosing the Right IP Creation Method244

13.4 Simulation and Documentation ..244
13.4.1 Simulation ..244
13.4.2 Documentation ...249

13.5 Chapter Review ..252
xiv

13.6 References ...252

CHAPTER 14 Spotlight on High-Level Synthesis 255
14.1 High-Level Synthesis Concepts ...256

14.1.1 What is High-Level Synthesis (HLS)?256
14.1.2 Motivations for High-Level Synthesis257
14.1.3 Design Metrics and Hardware Architectures259

14.2 Development of HLS Tools ..260
14.3 HLS Source Languages ..262

14.3.1 C ..262
14.3.2 C++ ...263
14.3.3 SystemC ..263
14.3.4 Other Languages for High-Level Synthesis264

14.4 Introducing Vivado HLS ..264
14.4.1 What Does Vivado HLS Do? ...264
14.4.2 Vivado HLS Design Flow ..267
14.4.3 C Functional Verification and C/RTL Cosimulation ..269
14.4.4 Implementation Metrics and Considerations271
14.4.5 Overview of the High-Level Synthesis Process272
14.4.6 Solutions: Exploring the Design Space276
14.4.7 Vivado HLS Library Support ..277

14.5 HLS in the Design Flow for Zynq ..277
14.6 Chapter Review ..278
14.7 References ...278

CHAPTER 15 Vivado HLS: A Closer Look 281
15.1 Anatomy of a Vivado HLS Project ..282
15.2 Vivado HLS User Interfaces ...283

15.2.1 Graphical User Interface ..284
15.2.2 Command Line Interface (CLI)286

15.3 Data Types ..287
15.3.1 C and C++ Native Data Types ..287
15.3.2 Vivado HLS Arbitrary Precision Data Types for C

and C++ ...289
15.3.3 Arbitrary Precision Types for SystemC292
15.3.4 Floating Point Data Types and Operators294
xv

15.3.5 Validation of Arbitrary Precision Models294
15.4 Interface Specification and Synthesis ..295

15.4.1 C/C++ Function Definition ...295
15.4.2 Synthesis of Port-Level Interfaces296
15.4.3 Port Interface Protocol Types ...298
15.4.4 Synthesis of Port Interface Protocols300
15.4.5 Block-Level Interface Ports and Protocols302
15.4.6 Interface Synthesis Directives ...304
15.4.7 Manual Interface Specification308

15.5 Algorithm Synthesis ..309
15.5.1 Implementation Metrics and Constraints309
15.5.2 Data Types ...311
15.5.3 Pipelining ...311
15.5.4 Dataflow ...316
15.5.5 Algorithm Case Study: Loops ...319
15.5.6 Arrays ...327

15.6 Design Evaluation and Optimisation ...328
15.6.1 Design Constraints ...328
15.6.2 Synthesis Directives ..329
15.6.3 Statistics and Reports ...329
15.6.4 Design Iterations and Optimisation329

15.7 Exporting from Vivado HLS ..330
15.7.1 Vivado IP Catalog (IP-XACT Format)330
15.7.2 System Generator for DSP ...330
15.7.3 Pcore for XPS ..330

15.8 Chapter Review ..331
15.9 References ...331

CHAPTER 16 Designing With Vivado High Level Synthesis 333
16.1 Prerequisites ...333
16.2 Aims and Outcomes ..333
16.3 Overview of Exercise 3A ...334
16.4 Overview of Exercise 3B ...334
16.5 Overview of Exercise 3C ...334
16.6 Possible Extensions ...335
16.7 What Next? ...335
xvi

CHAPTER 17 IP Creation 337
17.1 Aims and Outcomes ..337
17.2 Overview of Exercise 4A ...338
17.3 Overview of Exercise 4B ...338
17.4 Overview of Exercise 4C ...339
17.5 Possible Extensions ...340
17.6 What Next? ...341

CHAPTER 18 IP Reuse and Integration 343
18.1 Overview ...343
18.2 System Design — A System-Level Approach344
18.3 IP-XACT ...346
18.4 IP Libraries ...346

18.4.1 Vivado IP Catalog ...346
18.4.2 Third-Party ..347
18.4.3 Custom IP ..349

18.5 IP Integration ...349
18.5.1 IP Integrator ..349
18.5.2 IP Packager ..349

18.6 Chapter Review ..351
18.7 References ...351

CHAPTER 19 AXI Interfacing 353
19.1 Development of AXI ...353
19.2 Variations of AXI4 ..354
19.3 AXI Architecture ...354

19.3.1 Address Channels ...356
19.3.2 Write Data Channel ...356
19.3.3 Read Data Channel ...356
19.3.4 Write Response Channel ...356

19.4 Examples of Applications ...356
19.5 AXI Transactions ...358

19.5.1 AXI Write-Burst Transaction ...358
19.5.2 AXI Read-Burst Transaction ...358

19.6 AXI in the Xilinx Toolflow ...360
19.7 Summary ...364
xvii

19.8 References ...364

CHAPTER 20 Adventures with IP Integrator 365
20.1 Aims and Outcomes ..366
20.2 Exercise 4A ...367
20.3 Exercise 4B ..367
20.4 Exercise 4C ...368
20.5 Possible Extensions ...368
20.6 What Next? ...368

PART C Operating Systems & System Integration 369

CHAPTER 21 Introduction to Operating Systems on Zynq 371
21.1 Why Use an Embedded Operating System?371

21.1.1 Reducing Time to Market ..371
21.1.2 Make Use of Existing Features ..372
21.1.3 Reduce Maintenance and Development Costs373

21.2 Choosing the Right Type of Operating System373
21.2.1 Standalone Operating Systems374
21.2.2 Real-Time Operating Systems (RTOS)374
21.2.3 Other Embedded Operating Systems375
21.2.4 Further Considerations ..377

21.3 Applications ...377
21.4 Multi-Processor Systems ..378
21.5 Zynq Operating Systems ...379

21.5.1 Linux ...379
21.5.2 RTOS ..382
21.5.3 Further Operating Systems ..382

21.6 Chapter Review ..383
21.7 References ...383

CHAPTER 22 Linux: An Overview 385
22.1 A Brief History ...385
22.2 Linux System Overview ..386
22.3 Licensing ...387

22.3.1 GNU General Public licence ...388
xviii

22.4 Development Tools and Resources ...389
22.4.1 Virtual Machines ..389
22.4.2 Version Control ..391
22.4.3 Git ...392
22.4.4 Debugging Linux ..393

22.5 Chapter Review ..395
22.6 References ...396

CHAPTER 23 The Linux Kernel 397
23.1 Linux Kernel Hierarchy ..397
23.2 System Call Interface ...398
23.3 Memory Management ..400

23.3.1 Virtual Memory ..400
23.3.2 High and Low Memory ..401

23.4 Process Management ..401
23.4.1 Process Representation ..402
23.4.2 Process Creation, Scheduling and Destruction402

23.5 File System ..404
23.5.1 Linux File Systems ..404
23.5.2 Virtual File System ...405

23.6 Architecture-Dependent Code ..406
23.7 Linux Device Drivers ..406

23.7.1 A Note on Mechanisms Vs. Policies407
23.7.2 Module/Device Classification ...407

23.8 Chapter Review ..408
23.9 References ...408

CHAPTER 24 Linux Booting 409
24.1 Overview ...409
24.2 Stages of the Desktop Linux Boot Process411

24.2.1 BIOS ..411
24.2.2 First-Stage Bootloader (FSBL) ..411
24.2.3 Second-Stage Bootloader (SSBL)412
24.2.4 Kernel ...413
24.2.5 Init ...413

24.3 Booting Zynq ..414
xix

24.3.1 Zynq Boot Files ...416
24.3.2 Stage-0 (Boot ROM) ...417
24.3.3 Stage-1 (First-Stage Bootloader)419
24.3.4 Stage-2 (Second-Stage Bootloader)425

24.4 Chapter Review ..425
24.5 References ...426

Postscript 427

Glossary 429

List of Acronyms 439

Index 451
xx

Foreword

For over two years now, academics, industry professionals and "makers" worldwide have
had access to development boards that use the Zynq®-7000 All Programmable SoC from
Xilinx®. These boards including the ZedBoard, the Zc702, Zc706 and others have provided
users heretofore unprecedented abilities to build their own customizable System on Chip
(SoC) solutions. The Zynq SoC integrates an ARM® dual Cortex®-A9 based processor
system with Xilinx 7-series FPGA fabric and by doing so it provides the power, perfor-
mance and capacity benefits of an ASIC combined with the hardware programmability
benefits of an FPGA.

The strong demand for these devices and the first of its kind nature goes hand-in-hand
with a demand for supporting collateral in the form of documentation, training, tutorials
and guidebooks. As the first book written in the English language, "The Zynq Book" does a
remarkable job of filling a critical need, and the team from the University of Strathclyde
have put together a very comprehensive book, which covers the essential information every
Zynq user needs to know.

The book begins appropriately with an overview of the Zynq device, following up with a
description of the ZedBoard. The book then moves very quickly into information needed
to build designs targeted for the Zynq family, describing in depth both the development
flow for these devices as well as the implications of various design choices. As this is a
hybrid device which is both software and hardware programmable, the content compre-
hensively spans hardware design tools as well as the higher level software tools and flow. A
special spotlight on Vivado® High Level Synthesis (HLS) is included, which showcases the
productivity benefits offered by HLS as well as the synergy with the high level
programming model offered by the Cortex-A9 processors. Of critical importance are the
xxi

interfaces that connect the Processor System to the Programmable Logic or FPGA. The
book does an excellent job of providing an overview of these interfaces and guidance on
appropriately configuring them. Finally no book on an SoC is complete without a
description of the embedded software run-time environment. The concluding chapter
guides the reader through the nuances of booting Linux® on their very own custom SoC.

It is no coincidence that the first English language book on Zynq originates from the
University of Strathclyde. Since 2005 Xilinx has worked closely with the Department of
Electronic and Electrical Engineering at the University of Strathclyde in Scotland, UK. As
the Xilinx Endowed Chair, Professor Bob Stewart played a leading role in developing and
disseminating best practices for using Xilinx All Programmable technologies in academia
and industry. He and his team have created outstanding pedagogical material that has
enhanced the educational experience of tens of thousands of students and engineers
around the world. The successful relationship undoubtedly reflects the University of
Strathclyde's pragmatic, industry-driven ethos and its position as a leading technological
institution with an excellent international reputation. Indeed the University of Strathclyde
was founded in 1796 by Professor John Anderson, whose bequest was to create "a place of
useful learning". It is very clear that the University continues to be a place of useful learning
and a strong partner with Xilinx for technology education and research. It is also worth
saying that we are particularly pleased to be associated with an institution recognized in the
UK as University of the Year for 2013, and the UK Entrepreneurial University of the Year
for 2014.

This book is indeed a must read item for the first time Zynq user!

Vidya Rajagopalan
Corporate Vice President of Processing, Systems, Software and Applications (PSSA),
Xilinx, Inc.

June 2014.
xxii

Acknowledgements

There are a number of people to whom we must extend our sincerest thanks for their
support and practical help in producing The Zynq Book.

First of all, it simply would not have come to life without the vision of Patrick Lysaght,
Senior Director at Xilinx, whose idea it was to create a book about Zynq. The project soon
took on a life of its own, and we realised that there are many interesting things to write
about Zynq! The resulting book is the product not just of our own efforts, but the many
people who have helped us along the way.

Firstly, nobody could have been more helpful than Cathal McCabe, who has managed
the project from Xilinx University Program. His knowledgeable support has been
absolutely vital, and we are indebted to him for his patience, thoughtful input, and
thoroughness. This book would not have turned out nearly so well without Cathal.

We also greatly appreciate the input of several colleagues from Xilinx: Sagheer Ahmad,
Brian Gaide, Austin Lesea, Joshua Lu, Duncan Mackay, Daryl Nees, Stephen Neuendorffer,
Parimal Patel, Fernando Martinez Vallina, Tim Vanevenhoven, and Y.C. Wang all gave of
their time to read the book and provide constructive criticism. Some of these helpful
people also took the trouble to work through the tutorials and share their feedback. It has
been a great help to access their experience — thanks guys! We must also thank Barrie
Mullins for his help and support.

Our colleagues at University of Strathclyde have been a great help as well, and we would
like to thank them for their various inputs to the project. Several of them generously took
the time to read and review chapters, or to work through and test tutorials, and provided
much thoughtful feedback: many thanks to Douglas Allan, Dani Anderson, Dale Atkinson,
xxiii

Kenneth Barlee, Iain Chalmers, Fraser Coutts, David Crawford, Sam Edwards, Poppy
Harvey, Connor Hughes, Sarunas Kalade, Phil Karagiannakis, David Northcote and
Kenneth Osborne. We also appreciate the contributions of all to the general “Zynq-chat”
which has now become a feature of our working environment!

Last but not least, we must of course extend our thanks to our family and friends, who
accepted with good grace our lack of participation in social activities, particularly as the
various deadlines approached (!), and were most generous with their encouragement.

Louise Crockett, Ross Elliot, Martin Enderwitz, Bob Stewart.
June 2014.
xxiv

1

Introduction

s you might have guessed from the title, this is a book about Zynq! That’s Zynq as in
the new generation of All-Programmable System-on-Chip (SoC) [10], not to be confused
with zinc, or Zn, the chemical element.

In fact, there is a link between the two. Rumour has it that Xilinx gave their new device
the name Zynq, because it represents a (processing) element that can be applied to
anything. Zynq devices are intended to be flexible and form a compelling platform for a
wide variety of applications, just as the metal zinc can be mixed with various other metals
to form alloys with differing desirable properties.

The defining feature of Zynq is that it combines a dual-core ARM Cortex-A9 processor
[1] with traditional Field Programmable Gate Array (FPGA) logic fabric. Although
dedicated processors have been coupled with FPGAs before, it has never been quite the
same proposition. In Zynq, the ARM Cortex-A9 is an application grade processor, capable
of running full operating systems such as Linux, while the programmable logic is based on
Xilinx 7-series FPGA architecture [5], [7]. The architecture is completed by industry
standard AXI interfaces, which provide high bandwidth, low latency connections between
the two parts of the device [8]. This means that the processor and logic can each be used for
what they do best, without the overhead of interfacing between two physically separate
devices. Meanwhile, benefits arising from simplifying the system to a single chip include
reductions in physical size and overall cost.

As will be evident from the very size of this book, Zynq is about more than just the
silicon. It is compelling because the software development tools, design flow, and

A

1

CHAPTER 1: Introduction
standards-focussed integration methods are tailored to the requirements of Zynq-based
system design [6]. The facility to create better designs more quickly is of interest to
everyone! This book will introduce all of the topics necessary to get started in earnest, and
also provide some practical tutorials to guide new users through the design flow and proce-
dures.

We hope that you find the book informative and useful, whatever your level of prior
experience. A particular target is to provide an accessible introduction for those new to the
area.

1.1. System-on-Chip with Zynq

Given that we have already described Zynq as a System-on-Chip, an obvious first
question would be “What is an SoC?”.

As you may be aware, the concept has been around for a while; the implication is that a
single silicon chip can be used to implement the functionality of an entire system, rather
than several different physical chips being required. In the past, the term SoC has usually
referred to an Application Specific Integrated Circuit (ASIC), which can include digital,
analogue and radio frequency components, together with mixed signal blocks for imple-
menting analogue-to-digital and digital-to-analogue converters (ADCs and DACs).
Focussing on the digital aspect for a moment, an SoC can combine all aspects of a digital
system: processing, high-speed logic, interfacing, memory, and so on. All of these
functions might otherwise be realised using physically separate devices, and combined
together into a system at the Printed Circuit Board (PCB) level. The SoC solution is lower
cost, enables faster and more secure data transfers between the various system elements,
has higher overall system speed, lower power consumption, smaller physical size, and
better reliability. In fact there are a number of compelling reasons for preferring SoCs over
discrete component equivalent systems! For a simple graphical comparison of the system-
on-a-board and the system-on-chip, consider Figure 1.1.

The major disadvantages of ASIC-based SoCs are (i) development time and cost, and (ii)
lack of flexibility. The non-recurring engineering effort (and cost) of developing an ASIC
are significant, making this type of SoC suitable only for high-volume markets where there
is no requirement for future upgrades. Representative examples of ASIC-based SoCs are
the integrated processors found in PCs, tablets, and smartphones; these typically comprise
at least two processor cores, memory, graphics, interfacing, and other functions [4], and are
manufactured in high volume for products with a limited lifetime.
2

CHAPTER 1: Introduction
SoC

logic memory arithmetic

interfacing decisions clocks

f1(x) f2(x)
functions

decisions

interfaces

logic

arithmetic

memory

clocks

f1(x)

f2(x)

function

function

Figure 1.1: Comparison of System-on-a-Board (top) and System-on-Chip (bottom)
3

CHAPTER 1: Introduction
The limitations of ASIC SoCs render them incompatible with a significant number of
applications, particularly where fast time-to-market, flexibility, and upgrade-ability are of
key importance. They also constitute a poor solution for low or medium volume markets.
There is a clear need for a more flexible solution, and this is what motivates the System-on-
Progammable-Chip, a specific flavour of SoC implemented on a programmable, reconfig-
urable device. The natural solution has long been the FPGA. FPGAs are inherently flexible
devices that can be configured to implement any arbitrary system, including embedded
processors if needed. FPGAs can also be reconfigured as often as desired, thus offering a
more fundamentally flexible platform than ASICs for implementing SoCs. There is
virtually no risk in deploying an FPGA in applications where system upgrades are required.

Now, Zynq provides an even more ideal platform for implementing flexible SoCs: Xilinx
markets the device as an ‘All-Programmable SoC’ (APSoC), which perfectly captures its
capabilities. The Zynq architecture will be presented in detail in Chapter 2, but first it is
useful to introduce a high level model of its architecture (Figure 1.2). Note that Zynq
comprises two main parts: a Processing System (PS) formed around a dual-core ARM
Cortex-A9 processor, and Programmable Logic (PL), which is equivalent to that of an
FPGA. It also features integrated memory, a variety of peripherals, and high-speed
communications interfaces.

The PL section is ideal for implementing high-speed logic, arithmetic and data flow
subsystems, while the PS supports software routines and/or operating systems, meaning
that the overall functionality of any designed system can be appropriately partitioned
between hardware and software. Links between the PL and PS are made using industry

Processing

System

Programmable

Logic

AXI

Interfaces

Zynq

Figure 1.2: A simplified model of the Zynq architecture
4

CHAPTER 1: Introduction
standard Advanced eXtensible Interface (AXI) connections [8]. Further details of each of
these features will be presented as the book progresses.

1.2. Simple Anatomy of an Embedded SoC

At this early stage, it is useful to set out a basic model for the types of digital systems to
be discussed in this book. These will be systems incorporating a processor, memories, and
peripherals, along with buses connecting the various elements together. (This represents
the hardware system, and here we consider a very simplified architecture — more details
will be added in later chapters.) This model of the hardware system is shown in Figure 1.3.

The processor can be regarded as the central element of the hardware system. The
software system (a software ‘stack’) is run on the processor, comprising applications
(usually based on an Operating System (OS)), and with a lower layer of software function-
ality for interfacing with the hardware system. Communication between system elements
takes place via interconnections. These may be in the style of direct, point-to-point links, or
buses serving multiple components. In the latter case, a protocol is required to manage
access to the bus. Note that, although a single bus with connected peripherals is shown in
Figure 1.3, a processor may serve several connected buses.

Processor

Memory

Peripheral

A

Peripheral

B

Peripheral

C

interconnection

interconnection

Figure 1.3: The hardware system architecture of an embedded SoC (simplified)
5

CHAPTER 1: Introduction
Peripherals are functional components residing away from the processor, and in general
these perform one of three functions: (i) coprocessors — elements that supplement the
primary processor, usually optimised for a certain task; (ii) cores for interacting with
external interfaces, e.g. connecting to LEDs and switches, codecs, etc.; and (iii) additional
memory elements. Later in the book, we will consider peripherals in more detail, but at this
point it is useful to regard them as discrete functional blocks that can be designed, tested
and integrated into a system, and also ‘packaged’ for later reuse.

Figure 1.4 provides a view of the hardware system shown in Figure 1.3, mapped to the
Zynq device (depicted in Figure 1.2). The architectures of both have been substantially
simplified, but the objective at this stage is to provide a high level clarification of how
embedded SoCs map to Zynq devices. The PS has a fixed architecture and hosts the
processor and system memory, whereas the PL is completely flexible, giving the designer a
‘blank canvas’ to create custom peripherals, or to reuse standard ones. The interconnec-
tions are implemented via AXI interfaces linking the PS and PL.

Processor

Memory

Peripheral

A

Peripheral

B

Peripheral

C

AXI

AXI

Programmable

Logic

Processing System

Software Stack

Hardware Interfacing

Operating System

Zynq (section)
Applications

Figure 1.4: Relationship of the software system, hardware system, and Zynq architecture
6

CHAPTER 1: Introduction
The software system can also be seen on the left hand side of Figure 1.4. Software is
hosted on the processor, which here is the ARM Cortex-A9, residing within the Zynq PS. It
comprises a hierarchy of software elements, and this aspect will also be expanded upon
later in the book.

1.3. Design Reuse

The development of a complete embedded system is a significant design task, and there
are particular advantages to undertaking the design on a platform such as an FPGA or
Zynq device, which make the process more straightforward. The underlying PL hardware is
structured, and its performance characteristics are well known and integrated into the
software development tools. Moreover, given this stable, common development platform,
there is huge scope for design reuse. Intellectual Property (IP) functional blocks — corre-
sponding to the peripheral components seen in Figure 1.4 — can be sourced from Xilinx
libraries (provided with the design tools), reused from previous projects, or brought in
from third parties or open source repositories, before being integrated together to form the
system design.

Zynq is an SoC, and a wide variety of standard IP is available, meaning that there is no
need to redesign these components. By raising the abstraction level in this way, and reusing
components in the form of pre-tested and verified IP, development can be accelerated and
costs can be lowered. As the popular saying goes, “Why reinvent the wheel?”.

Given its importance to the SoC design philosophy, one of the key themes of this book
will be design reuse. We will consider the various sources of IP, including Xilinx libraries,
mechanisms for generating one’s own IP, and sources of third party IP. Of course, it is not
enough simply to attain these blocks — they must also be integrated into the system and
appropriate connections and interactions established; therefore we also discuss the specific
tools and methods required for this IP integration aspect of the design process. Finally, with
a view to reuse and sharing of design elements, the ‘packaging’ of IP into the industry
standard IP-XACT format will also be covered. These topics are the focus of Chapters 13
and 18, respectively.

1.4. Raising the Abstraction Level

A recurring trend in various software and hardware design processes is that of raising
the level of abstraction. The motivation is clear: if the designer can effectively create
systems with a lower requirement for explicit design input, while also supporting robust
test processes, then there is great potential to accelerate the design process.
7

CHAPTER 1: Introduction
In terms of FPGA and Zynq design, advances in High Level Synthesis (HLS) mean that
designers can create system components by specifying them using less detail than tradi-
tional, Register Transfer Level (RTL) methods, and instead rely upon the design tools to
infer logic and optimise where possible, in accordance with user-supplied direction.
Naturally this places a degree of trust in the development tools, which must be robust and
produce repeatable and reliable designs. To meet this need, Xilinx has introduced the
Vivado HLS tool, a high level synthesis development tool which specifically targets Xilinx
devices. We will introduce Vivado HLS and associated design methods later in the book.

1.5. SoC Design Flow

A multitude of different models have been proposed for the SoC design flow with
varying levels of complexity, but initially we aim to define the design flow for SoC devel-
opment (as applied to Zynq) in very simple terms. The basic stages are shown in Figure 1.5.

Each of these will be expanded upon and discussed in greater detail later in the book, but
a brief definition will suffice for now.

Naturally, as in any design project, the first stage is to define the desired behaviours of
the system, i.e. to create an appropriate specification from a set of requirements. This is
depicted as the starting point at the top of the diagram, and it forms the basis of the system
design that is subsequently developed.

As mentioned earlier in this chapter, the Zynq architecture combines an ARM processor
(for software elements of the designed system) with FPGA fabric (predominantly for
hardware elements of the system, although additional processors can also be implemented
here too, if desired). A key element of the system design stage, which comes next, is
therefore to partition the intended functionality appropriately between software and
hardware, and to define the interfaces between the two sections. Of course, it is possible
that this partitioning will subsequently be adjusted as the designers iterate the system
towards completion.

Having partitioned the system, software and hardware development can then progress in
parallel, to a large extent. In terms of hardware development, the task is to identify the
necessary functional blocks to achieve the design, and to thereafter assemble them through
some combination of design reuse and new IP development, and make appropriate
connections between the blocks. Similarly, the software aspect of the project can be realised
through developing custom code or by reusing pre-existing software. Verification of both
software and hardware will be required, and this forms an integral and important part of
the process.
8

CHAPTER 1: Introduction
Lastly, the hardware and software elements of the system must be integrated according
to the interfaces defined at the specification stage, and further ‘whole system’ testing
undertaken.

The design flow will be discussed further in Chapter 3, and Zynq-based SoC design in
Chapters 10 and 11.

System Design

Software / Hardware

Partitioning

SpecificationSpecification

System Integration

and Testing

Hardware

Development

and Testing

Requirements

ha

rdware / software

Software

Development

and Testingintegration & testin
g

Figure 1.5: A basic model of the design flow for Zynq SoC
9

CHAPTER 1: Introduction
1.6. Practical Elements

This book indirectly features a set of practical exercises that can be followed alongside
the main text. Detailed instructions and all necessary resource files for these are hosted on
a companion website, while the book itself includes a concise overview of each exercise,
confirming its purpose and the key points of note. The detailed instructions on the web are
updated asynchronously to the book, in order to maintain compatibility with the latest
releases of Xilinx development tools.

The exercises can be followed with the aid of the Xilinx Vivado Design Suite (the free
WebPACK® edition or higher [9]), and the Zynq-based ZedBoard [11]. It is also possible to
interpret the instructions for an alternative board, if you prefer. Should you already have
them, the more fully specified Xilinx Embedded or System editions of Vivado would offer
enhanced functionality, but WebPACK provides sufficient facilities to get started.

The ZedBoard is shown in Figure 1.6, and this is a good, representative example of a
Zynq development board [11]. There are several Zynq boards available and, like this one,
most provide a variety of peripheral interfaces and connectors including ethernet, audio
and video. The availability of IP blocks and reference designs supporting these features
makes it relatively quick and simple to create first interactive designs. Selected Zynq boards
are introduced in Chapter 3, with further details of the ZedBoard provided in Chapter 6.

1.7. About This Book

This book provides both descriptive and hands-on introductions to working with the
Zynq APSoC. Most of the chapters are standard chapters (“for reading”) while there are
also some others which relate to practical exercises (“for doing”). Within the book itself, we
provide a short overview of each practical element, while detailed instructions and
resource files are provided on a companion website [12]. This approach is intended to be
more convenient, and to permit the detailed, tool-dependent instructions to be updated in
response to revisions of the Xilinx software development tools, and asynchronously to the
book.

The remainder of the book is organised into three, themed sections as follows:

Part A provides introductory information about the Zynq device, its associated toolflow,
and the ZedBoard. Furthermore, Zynq is compared with alternative devices, and applica-
tions are explored. Part A also includes a dedicated section on Zynq and associated SoC
concepts in the context of research, university-based teaching, and training catering for the
general community.
10

CHAPTER 1: Introduction
 Part B is an in-depth review covering various aspects of the Xilinx SoC development
using Zynq. It includes concepts of embedded systems design, IP block creation and
integration, and software-hardware codesign. There is also a special ‘spotlight’ chapter,
focussing on the increasingly important area of HLS for rapid development of IP.

Part C focuses on OSs for Zynq SoC development. Applications, motivations, trade-offs,
OS alternatives, and features are all reviewed and discussed. Further, there is an in-depth
look at the practical issues of deploying Linux on Zynq, and thus forming an embedded
system in combination with PL-based elements.

There is also a Glossary and List of Acronyms at the back of this book. A large number
of terms and acronyms are used, and these should provide useful references.

Next we continue to Chapter 2, in which a more detailed introduction to the Zynq
device architecture is provided.

Figure 1.6: A view of the ZedBoard

Zynq device
11

CHAPTER 1: Introduction
1.8. References

Note: All URLs last accessed June 2014.

[1] ARM, “The ARM Cortex-A9 Processors”, White paper, v2.0, September 2009.
Available: http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

[2] Avnet website.
Available: http://www.avnet.com

[3] Digilent website.
Available: http://www.digilentinc.com

[4] M. Dixon, P. Hammarlund, S. Jourdan and R. Singhal, “The Next Generation Intel Core Microarchitecture”,
Intel Technology Journal, Vol. 14, Issue 3, 2010. pp. 8 - 29.

[5] M. Santarini, “Xilinx Redefines State of the Art With New 7 Series FPGAs”, Xcell Journal, Third Quarter
2010, pp. 6 - 11.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf

[6] M. Santarini, “Xilinx Unveils Vivado Design Suite for the Next Decade of ‘All Programmable’ Devices”,
Xcell Journal, Second Quarter 2012, pp. 8 - 13.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf

[7] Xilinx, Inc., “7 Series FPGAs Overview”, Product Specification, DS180, v.1.15, February 2014.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

[8] Xilinx, Inc., “AXI Reference Guide”, UG761, v14.3, November 2012.
Available: http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/
ug761_axi_reference_guide.pdf

[9] Xilinx, Inc., “Vivado Design Suite”, webpage.
Available: http://www.xilinx.com/products/design-tools/vivado/index.htm

[10]Xilinx, Inc., “Zynq 101” webpage.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/zynq-101.html

[11]ZedBoard website.
Available: http://www.zedboard.org/

[12]Zynq Book companion website.
Available: http://www.zynqbook.com
12

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.avnet.com/
http://www.digilentinc.com
http://www.digilentinc.com
http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/zynq-101.html
http://www.zedboard.org/
http://www.zynqbook.com

PART A
Getting to Know Zynq

2

The Zynq Device

 (“What is it?”)

f you’re reading this book, it is likely that you have some background in developing
systems using FPGAs, or processors, or both. As set out at the start of the book, the Zynq is
a new kind of device which combines both FPGA fabric and a capable applications
processor, and therefore its features, capabilities, and potential applications are somewhat
different to those of an FPGA or processor in isolation.

Over this and the next few chapters, we will take a more detailed look at the Zynq from a
variety of perspectives, in the process addressing basic but important questions such as
“What is it?”, “How do I work with it?” and “Why do I need Zynq?”. This chapter focuses on
the first of these questions, and introduces the Zynq architecture.

Referring back to Figure 1.2 on page 4, the general architecture of the Zynq comprises
two sections: the Processing System (PS), and the Programmable Logic (PL). These can be
used independently or together, and in fact the power circuitry is configured with separate
domains for each, enabling either the PS or PL to be powered down if not in use. However,
the most compelling use model for Zynq is when both of its constituent parts are used in
conjunction, and therefore it is important to appreciate the structure of both sections, as
well as the interfaces between them.

The architecture of Zynq is reviewed over the remainder of this chapter, starting with the
PS. Extended information can be found in the Zynq-7000 Technical Reference Manual [33].

I

15

CHAPTER 2: The Zynq Device (“What is it?”)
2.1. Processing System

All Zynq devices have the same basic architecture, and all of them contain, as the basis of
the processing system, a dual-core ARM Cortex-A9 processor. This is a ‘hard’ processor —
it exists as a dedicated and optimised silicon element on the device.

For comparison purposes, the alternative to a hard processor is a ‘soft’ processor like the
Xilinx MicroBlaze, which is formed by combining elements of the programmable logic
fabric [27]. The implementation of a soft processor is therefore the equivalent of any other
IP block deployed in the logic fabric of an FPGA. In general, the advantage of soft
processors is that the number and precise implementation of processor instances is flexible.
On the other hand, hard processors can achieve considerably higher performance, as is
true of Zynq’s ARM processor. This aspect will be discussed in more detail in Chapter 4.

It is worth noting that one or more MicroBlaze soft processors can be used within the PL
portion of the Zynq, to operate in conjunction with the ARM processor. The MicroBlaze
instances may have, for example, the role of co-ordinating specific low level functions
within the system; less demanding tasks which can be delegated away from the main ARM
Cortex-A9 processors to enhance overall performance. In other words, the presence of the
ARM processor in the system does not preclude the use of soft processors, and indeed
many applications may benefit from employing a processing model such as this, which uses
both types.

Figure 2.1 confirms the positions of the ARM and MicroBlaze processors on the Zynq
device; the ARM as a dedicated resource, and the MicroBlaze located in the logic fabric.

PS

PL

ARM processor
(hard processor)

optional

MicroBlaze

processor
(soft processor, built from

logic slices)

Figure 2.1: Locations of hard (ARM Cortex-A9) and soft (MicroBlaze) processors on a Zynq device
16

CHAPTER 2: The Zynq Device (“What is it?”)
Importantly, the Zynq processing system encompasses not just the ARM processor, but a
set of associated processing resources forming an Application Processing Unit (APU), and
further peripheral interfaces, cache memory, memory interfaces, interconnect, and clock
generation circuitry [8]. A block diagram showing the architecture of the PS is shown in
Figure 2.2, where the APU is highlighted.

2.1.1. Application Processing Unit (APU)

A simplified block diagram of the APU is shown in Figure 2.3. The APU is primarily
comprised of two ARM processing cores, each with associated computational units: a
NEON™ Media Processing Engine (MPE) and Floating Point Unit (FPU); a Memory
Management Unit (MMU); and a Level 1 cache memory (in two sections for instructions
and data). The APU also contains a Level 2 cache memory, and a further On Chip Memory

Figure 2.2: The Zynq Processing System

© Xilinx
17

CHAPTER 2: The Zynq Device (“What is it?”)
(OCM). Finally, a Snoop Control Unit (SCU) forms a bridge between the ARM cores and
the Level 2 cache and OCM memories; this unit also has some responsibility for interfacing
with the PL, which is not depicted here.

 The ARM Cortex-A9 can operate at up to 1GHz, depending on the particular Zynq
device (to be detailed in Section 2.5). Each of the two cores has separate Level 1 caches for
data and instructions, both of which are 32KB; as in the general case, this permits local
storage of frequently required data and instructions for fast access times and optimal
processor performance. The two cores additionally share a larger Level 2 cache of 512KB
for instructions and data, and there is a further 256KB of on-chip memory within the APU.
The primary role of the MMU is to translate between virtual and physical addresses (refer
to Section 23.3 for a discussion of memory management in the context of a Linux operating
system).

The Snoop Control Unit undertakes several tasks relating to interfacing between the
processors and Level 1 and 2 cache memories (‘snooping’ is one of several mechanisms for
ensuring cache coherency, i.e. managing the consistency of data across shared cache
resources [13]). The SCU is responsible for maintaining memory coherency between the

APU

ARM

processor 0

NEON/FPU

L1(D) L1(I)

M

M

U

ARM

processor 1

NEON/FPU

L1(D) L1(I)

M

M

U

Snoop Control Unit (SCU)

L2 Cache OCM

Memory Management Unit

NEON & floating point extensions

ARM Cortex-A9 processing core

Level 1 cache memory

(32KB each, data & instructions)

Shared Level 2 cache memory

(512KB, data & instructions)

On Chip Memory (256KB)

Figure 2.3: Block diagram of the application processing unit (simplified)
18

CHAPTER 2: The Zynq Device (“What is it?”)
processor data cache memories, which are marked as L1(D) in Figure 2.3, and the shared
Level 2 cache memory. It also initiates and controls access to the Level 2 cache, arbitrating
between requests from the two cores where necessary [8], [33]. The SCU additionally
manages transactions that take place between the PS and PL via the Accelerator Coherency
Port (ACP); not shown in the simplified APU diagram (Figure 2.3), but visible at the right
hand side of Figure 2.2. Timers and an interrupt controller are further functional blocks
located in the APU; more information about these can be found in [8].

From a programming perspective, support for ARM instructions is provided via the
Xilinx Software Development Kit (SDK) which includes all necessary components to
develop software for deployment on the ARM processor. The compiler supports the ARM
and Thumb® instruction sets (16-bit or 32-bit), along with 8-bit Java bytecodes (used for
Java Virtual Machines) when in the appropriate state. The reader is directed to [5] for
further information about instruction set options and details.

As additional functionality to the main ARM processor, the NEON engine provides
Single Instruction Multiple Data (SIMD) facilities to enable strategic acceleration of media
and DSP type algorithms [9]. NEON instructions are an extension to the standard ARM
instruction set, and can either be used explicitly, or by ensuring that the C code follows an
expected form and thus allows NEON operations to be inferred by the compiler [15]. As
the SIMD term suggests, the NEON engine can accept multiple sets of input vectors, upon
which the same operation is performed simultaneously to provide a corresponding set of
output vectors. This style of computation caters well to applications like image and video
processing, which operate on a large number of data samples (pixels) simultaneously, and
inherently parallel, generic signal processing functions such as Finite Impulse Response
(FIR) filters and Fast Fourier Transforms (FFTs).

The computation of the NEON engine is depicted in Figure 2.4. There are two input
registers, A and B, each of which contain a set of N individual input vectors. A single
defined operation is performed between the N sets of input vectors to produce a corre-
sponding set of output vectors which are written to the output register. The size of the
vectors can vary, as can the number of vectors comprising each register; the important
feature is that each ‘lane’ produces results arising from the same operation, which is
performed on several different sets of inputs at the same time; hence the term single
instruction multiple data.

NEON supports a variety of data types including signed and unsigned integers, single
precision floating point, and half-precision floating point; however, double precision is not
supported [9]. The floating point unit (which does not possess SIMD capabilities) is
required if double precision computation is needed.
19

CHAPTER 2: The Zynq Device (“What is it?”)
In addition to NEON, there are also extensions for the Floating Point Unit (FPU). These
are referred to as ‘Floating Point Extensions’, or sometimes ‘VFP Extensions’ (Vector
Floating Point) for historical reasons. The unit provides hardware acceleration of floating
point operations in compliance with the IEEE 754 standard [11], and supports single and
double precision formats, with some additional support for half-precision and integer
conversion. There are a small number of restrictions in terms of the functionality
supported, as detailed in [7] and [5], but these do not affect compliance with the standard.

2.1.2. A Note on the ARM Model

It is useful to be aware of the processor licensing model used by ARM Limited, and the
implications for you as a Zynq user when referring to Xilinx and ARM documentation.

ARM’s business model is to license Original Equipment Manufacturers (OEMs), such as
Xilinx, to utilise ARM processor IP within the devices they develop (in this case, Zynq).
The Zynq includes the Cortex-A9, which is one of a range of available processors, and this
is based on a specific profile (A) of a specific architecture (ARM v7). Even having selected
the Cortex-A9 processor, the exact implementation can still be customised by the OEM for
inclusion in the designed product, as was the case when Xilinx designed Zynq. The reader
may wish to refer to [4], where a helpful overview of this structure and methodology is
given.

OP

la
n
e

0

OP

la
n
e

1

OP OP OP

la
n
e

n
-2

OP

la
n
e

n
-1

operation
(same for all)

output reg

input reg A

input reg B

n processing lanes

b bits

Figure 2.4: Single Instruction Multiple Data (SIMD) processing in the NEON MPE
20

CHAPTER 2: The Zynq Device (“What is it?”)
As there is flexibility in the configuration of the processor IP ARM provides, there is not
always a direct correspondence between the ARM and Xilinx documentation. For example,
the ARM Cortex-A9 can have between 1 and 4 processing cores; when designing the Zynq
device, Xilinx have specified a configuration which includes 2 cores. There are also other
elements that can be configured (for example, the Level 1 cache memory size can be
specified as 16KB, 32KB or 64 KB) and Xilinx have selected 32KB. Finally, there are
optional extensions, and notably Xilinx have chosen to include the NEON and FPU exten-
sions in the Zynq.

The ARM documentation describes the APU in detail, but with a level of generality, and
with separate manuals for the Cortex-A9 core, optional extensions, and also the archi-
tecture on which it is based. Understanding the implementation in depth therefore may
require consultation with several ARM manuals, and with knowledge of the parameters of
the Zynq implementation; meanwhile, specifics relating to the Zynq configuration are
confirmed in the Xilinx documentation.

Note that the Zynq-7000 specifically uses the r3p0 revision of the ARM Cortex-A9,
which is based on the ARM v7-A architecture. This is significant when referring to ARM
documentation, as different versions of the manuals are available corresponding to the
processor revisions.

2.1.3. Processing System External Interfaces

 The Zynq PS features a variety of interfaces, both between the PS and PL, and between
the PS and external components, as shown in Figure 2.2. In this section, we specifically
cover the external interfaces; PS-PL interfacing will be covered later, in Section 2.3.

Communication between the PS and external interfaces is achieved primarily via the
Multiplexed Input/Output (MIO), which provides 54 pins of flexible connectivity, meaning
that the mapping between peripherals and pins can be defined as required. Certain connec-
tions can also be made via the Extended MIO (EMIO), which is not a direct path from the
PS to external connections, but instead passes through and shares the I/O resources of the
PL [30]. These are both shown at the left hand side of Figure 2.2. The EMIO can be used
when extension beyond 54 pins is required, or as a method of interfacing the PS with an IP
block implemented in the PL. EMIO is discussed further in Section 2.3.3.

The available I/O includes standard communications interfaces, and General Purpose
Input/Output (GPIO) which can be used for a variety of purposes including simple
buttons, switches, and LEDs. The complete set of I/O peripheral interfaces is reviewed in
Table 2.1, where the names stated in the left hand column correspond to the shortened
21

CHAPTER 2: The Zynq Device (“What is it?”)
versions used within the Xilinx development tools. Note that there are two instances of
each type of communications interface.

Extensive further information about each of these interfaces is available in the Zynq-
7000 Technical Reference Manual [33].

2.2. Programmable Logic

The second principal part of the Zynq architecture is the programmable logic. This is
based on the Artix®-7 and Kintex®-7 FPGA fabric, and is reviewed over the coming pages.

Table 2.1: List of I/O Peripheral Interfaces

I/O Interface Description

SPI (x2) Serial Peripheral Interface [10]
De facto standard for serial communications based on a 4-pin
interface. Can be used either in master or slave mode.

I2C (x2) I2C bus [14]
Compliant with the I2C bus specification, version 2. Supports
master and slave modes.

CAN (x2) Controller Area Network
Bus interface controller compliant with ISO 118980-1, CAN
2.0A and CAN 2.0B standards.

UART (x2) Universal Asynchronous Receiver Transmitter
Low rate data modem interface for serial communication. Often
used for Terminal connections to a host PC.

GPIO General Purpose Input/Output
There are 4 banks GPIO, each of 32 bits.

SD (x2) For interfacing with SD card memory.

USB (x2) Universal Serial Bus
Compliant with USB 2.0, and can be used as a host, device, or
flexibly (“on-the-go” or OTG mode, meaning that it can switch
between host and device modes).

GigE (x2) Ethernet
Ethernet MAC peripheral, supporting 10Mbps, 100Mbps and
1Gbps modes.
22

CHAPTER 2: The Zynq Device (“What is it?”)
2.2.1. The Logic Fabric

The PL part of the Zynq device is depicted in Figure 2.5, with various features
highlighted. The PL is predominantly composed of general purpose FPGA logic fabric,
which is composed of slices and Configurable Logic Blocks (CLBs), and there are also Input/
Output Blocks (IOBs) for interfacing. (Note that these are all Xilinx-specific terms.)

Next, each of the labelled features in Figure 2.5 will be explained. Note that there are also
some other coloured blocks shown, and these will be reviewed in later sections.

Features of the PL (shown in Figure 2.5) can be summarised as follows:

• Configurable Logic Block (CLB) — CLBs are small, regular groupings of logic
elements that are laid out in a two-dimensional array on the PL, and connected to

Logic

Fabric

switch

matrix

programmable

interconnects

Configurable

Logic Block (CLB)

(slice)

Input / Output

Blocks (IOBs)

Figure 2.5: The logic fabric and its constituent elements
23

CHAPTER 2: The Zynq Device (“What is it?”)
other similar resources via programmable interconnects. Each CLB is positioned
next to a switch matrix and contains two logic slices, as shown in Figure 2.6.

• Slice — A sub-unit within the CLB, which contains resources for implementing
combinatorial and sequential logic circuits. As indicated in Figure 2.6, Zynq slices
are composed of 4 Lookup Tables, 8 Flip-Flops, and other logic.

• Lookup Table (LUT) — A flexible resource capable of implementing (i) a logic
function of up to six inputs; (ii) a small Read Only Memory (ROM); (iii) a small
Random Access Memory (RAM); or (iv) a shift register. LUTs can be combined
together to form larger logic functions, memories, or shift registers, as required.

• Flip-flop (FF) — A sequential circuit element implementing a 1-bit register, with
reset functionality. One of the FFs can optionally be used to implement a latch.

• Switch Matrix — A switch matrix sits next to each CLB, and provides a flexible
routing facility for making connections (i) between elements within a CLB; and (ii)
from one CLB to other resources on the PL.

CoutCout

CinCin

Sw
itc
h

Ma
tri
x

LUT FF

LUT FF

LUT FF

LUT FF

FF

FF

FF

FF

CLB

Figure 2.6: Composition of a Configurable Logic Block (CLB)

Sl
ice

 0

Sl
ice

 1

24

CHAPTER 2: The Zynq Device (“What is it?”)
• Carry logic — Arithmetic circuits require intermediate signals to be propagated
between adjacent slices, and this is achieved via carry logic. The carry logic
comprises a chain of routes and multiplexers to link slices in a vertical column.

• Input / Output Blocks (IOBs) — IOBs are resources that provide interfacing between
the PL logic resources, and the physical device ‘pads’ used to connect to external
circuitry. Each IOB can handle a 1-bit input or output signal. IOBs are usually
located around the perimeter of the device.

Extended information on the CLB resources within the logic fabric can be found in [20].

Although it is useful for the designer to have a knowledge of the underlying structure of
the logic fabric, in most cases there is no need to specifically target these resources — the
Xilinx tools will automatically infer the required LUTs, FFs, IOBs etc. from the design, and
map them accordingly.

2.2.2. Special Resources: DSP48E1s and Block RAMs

In addition to the general fabric, there are two special purpose components: Block
RAMs for dense memory requirements; and DSP48E1 slices for high-speed arithmetic.
Both of these resources are integrated into the logic array in a column arrangement,
embedded into the fabric logic and normally in proximity to each other (the reason being
that intensive computation and storage of data in memory are often closely associated
operations). This aspect of the device layout is indicated in Figure 2.5.

 The Block RAMs in the Zynq-7000 are equivalent to those on Xilinx 7 series FPGAs,
and they can implement Random Access Memory (RAM), Read Only Memory (ROM),
and First In First Out (FIFO) buffers, while also supporting Error Correction Coding
(ECC) [23].

Each Block RAM can store up to 36Kb of information, and may be configured either as
one 36Kb RAM, or two independent 18Kb RAMs. The default word size is 18 bits, and in
this configuration each RAM comprises 2048 memory elements. The RAM can also be
‘reshaped’ such that it contains more, smaller elements (for example 4096 elements x 9 bits,
or 8192 x 4 bits), or alternatively, fewer, longer elements (e.g. 1024 elements x 36 bits, 512 x
72 bits). Larger capacity memories can be formed by combining two or more Block RAMs
together.

Using a Block RAM means that a large amount of data can be stored in a small physical
space on the device, within a dedicated and optimised memory element; the alternative is
Distributed RAM, which is constructed from the LUTs within the logic fabric. A significant
25

CHAPTER 2: The Zynq Device (“What is it?”)
number of LUTs (spanned over a larger area) are required to form a memory of comparable
size to a Block RAM, and the resulting implementation suffers from restricted timing
performance due to the increased logic and routing delays. On the other hand, it is often
advantageous to implement small memories using distributed RAM, both for resource
efficiency, and because their placement is more flexible (distributed memories can be
located close to the components that interact with them, which can result in fast timing
performance too). Block RAMs can normally be clocked at the highest clock frequency
supported by the device.

The LUTs in the logic fabric can be used to implement arithmetic operators of any
arbitrary length, but are most suitable for arithmetic operators with short wordlengths
(arithmetic circuits for long wordlengths can have a large footprint in slice logic, with
placement and routing factors resulting in sub-optimal clock frequencies). DSP48E1s are
specialist slices for implementing high-speed arithmetic on signals with medium to long
arithmetic wordlengths. They are dedicated silicon resources, and primarily comprise a
pre-adder/subtractor, multiplier, and post-adder/subtractor with logic unit, as shown in
Figure 2.8, where maximum arithmetic wordlengths are marked.

column of

DSP48E1s

column of

Block RAMs

DSP48E1s
Block

RAMs

Figure 2.7: The logic fabric and its constituent elements
26

CHAPTER 2: The Zynq Device (“What is it?”)
Figure 2.8 is a simplified diagram which omits low level implementation details. The
DSP48E1 makes use of multiplexing circuitry to permit flexible usage of registers, and to
support dynamic alteration of the computation (i.e. the function can be changed on a cycle-
by-cycle basis as required). Various computations are possible, involving one, two or all of
these arithmetic operators, and these are selected via an OPMODE input that configures
the internal multiplexers (not fully shown in the diagram) and determines the arithmetic
functionality implemented. Notice that the inputs are labelled A, B, C, and D, and that the
output is labelled P. The unit can compute the functions P = (A+D)*B, or P = P’ + C, or in
fact many others. It is also capable of SIMD processing, implementing 2 or 4 shorter
addition/subtraction/accumulation operations of 24 or 12 bits, respectively.

Notice also from Figure 2.8 that the post-adder has additional capabilities as a logic unit.
When used in logic mode, it can perform logical functions instead of arithmetic, and
supports all of the fundamental boolean operations: bit-wise NOT, AND, OR, NAND,
NOR, XOR, and XNOR. It is also worth mentioning the pattern detector (not shown in the
diagram) which adds the capability to detect overflow, perform rounding according to a
selection of schemes, and undertake other related functions.

 The standard arithmetic wordlengths marked on Figure 2.8 are adequate for most
requirements, but they can also be extended by combining multiple DSP48E1s, if needed.
Complex arithmetic can be undertaken, again by combining DSP48E1s, and the
wordlengths are also suitable for implementing floating point arithmetic. Together with the

25

18

43

48

48

25

25

DSP48E1

Figure 2.8: Arithmetic capabilities of the DSP48E1 slice

A
D

C

B P

pre-adder

multiplier post-adder
/ logic unit
27

CHAPTER 2: The Zynq Device (“What is it?”)
advantage of high frequency operation (just like Block RAMs, DSP48E1s can be clocked at
the maximum clock frequency of the device) and low power consumption, these DSP48E1
slices are attractive for implementing computationally demanding arithmetic circuits.

 As a result of these properties, DSP48E1s are suited to a variety of applications in signal
processing and beyond. One of their most compelling uses is to implement symmetric
form Finite Impulse Response filters, which are commonly used in DSP and digital
communications. The pre-adder ensures that each DSP48E1 can implement two filter taps,
and entire filters can be formed by cascading DSP48E1s together, without the requirement
to utilise any logic from the general fabric. This provides a high performance, highly
efficient implementation for one of the fundamentally important computations in DSP.

When designing with Zynq, it makes sense to identify deterministic, computationally
parallel functions and implement them in the PL section of the device, specifically
targeting DSP and Block RAM resources where possible. In this way, the PL can be used to
accelerate algorithms residing in the PS. There are many conceivable examples where the
availability of PL directly adjacent to the processor, and the opportunity to allocate certain
system functions to the PL, can bring significant benefits to the overall system implemen-
tation.

Further details about the DSP48E1 can be found in [17], and Block RAM memory
resources in [23].

2.2.3. General Purpose Input/Output

The general purpose input / output facilities (IOBs) on the Zynq are collectively referred
to as SelectIO Resources, and these are organised into banks of 50 IOBs each. Each IOB
contains one pad, which provides the physical connection to the outside world for a single
input or output signal.

The I/O banks are categorised as High Performance (HP) or High Range (HR), and
these support a variety of I/O standards and voltages as detailed in [24]; the HP interfaces
are limited to voltages of 1.8V and are typically used for high-speed interfaces to memory
and other chips, while the HR interfaces permit voltages of up to 3.3V and cater for a wider
variety of IO standards. Both single-ended and differential signalling are supported,
requiring 1 IOB and 2 IOBs per connection, respectively.

Each IOB also includes an IOSERDES resource for programmable conversion between
parallel and serial data formats (serialisation and deserialisation), of between 2 and 8 bits.
28

CHAPTER 2: The Zynq Device (“What is it?”)
2.2.4. Communications Interfaces

The more highly specified Zynq devices include GTX Transceivers, high-speed commu-
nications interface blocks which are embedded into the logic fabric [21]. These are
dedicated silicon blocks (“Hard IP” blocks), and they are capable of supporting a number
of standard interfaces including PCI Express, Serial RapidIO, SCSI and SATA. Imple-
menting PCI Express also requires a second Hard IP block (a PCI Express block [22], also
present on the relevant Zynq devices) and Block RAMs, in addition to the GTX transceiver
itself.

GTX Transceivers are implemented as ‘quads’, i.e. groups of 4 individual channels, each
of which comprises a dedicated Phase Locked Loop (PLL) for that channel, a transmitter,
and a receiver. Depending on the Zynq device and package chosen, rates of up to 12.5Gbps
are supported. The interfaces can be used to create connections to independent external
devices such as networking equipment, hard disks, and further FPGA or Zynq devices.

In terms of working with the GTX blocks, support is provided via a Wizard tool which
automatically creates a core for the desired interface [26]. From the user perspective, this
entails introducing a block into the system, choosing the desired protocol and hardware
options, and setting parameters.

2.2.5. Other Programmable Logic External Interfaces

This section on I/O is completed by summarising the remaining external interfaces to
the PL.

Analogue to Digital Conversion — The PL includes another hard IP component: the
XADC block. This is a dedicated set of Analogue to Digital Converter (ADC) mixed signal
hardware, which features two separate 12-bit ADCs both capable of sampling external
analogue input signals at 1Msps. Control of the XADC is achieved using the PS-XADC
interface block located within the PS, and the PS-XADC control block can itself be
programmed from software executing on the APU. Extended information about the XADC
and related resources can be found in [18].

Clocks — The PL receives four separate clock inputs from the PS, and additionally has
the facilities to generate and distribute its own clock signals independently of the PS [33].
The independent PL resources are equivalent to those of a 7 series FPGA, further details of
which can be found in [19].

Programming and Debug — A set of JTAG ports are provided in the PL section to facil-
itate configuration and debugging of the PL [33], [12]. Although more secure methods are
normally preferred in deployment, JTAG configuration is often used during the devel-
29

CHAPTER 2: The Zynq Device (“What is it?”)
opment phase. The facilities offered via JTAG support debugging with both ARM and
Xilinx tools.

2.3. Processing System — Programmable Logic Interfaces

As mentioned in the previous section, the appeal of Zynq lies not just in the properties of
its constituent parts, the PS and the PL, but in the ability to use them in tandem to form
complete, integrated systems. The key enabler in this regard is the set of highly specified
AXI interconnects and interfaces forming the bridge between the two parts. There are also
some other types of connections between the PS and PL, in particular EMIO.

This section examines the connections between the PS and PL and considers how they
can be used. We begin by introducing the AXI standard, upon which most of these connec-
tions are based.

2.3.1. The AXI Standard

AXI stands for Advanced eXtensible Interface, and the current version is AXI4, which is
part of the ARM AMBA® 3.0 open standard. Many devices and IP blocks produced by third
party manufacturers and developers are based on this standard.

The AMBA standard was originally developed by ARM for use in microcontrollers, with
the first version being released in 1996. Since then, the standard has been revised and
extended, and it is now described by ARM as “the de facto standard for on-chip communi-
cation” [3]. The focus is now on System-on-Chip, including SoCs based on FPGAs or, in
the case of Zynq, a device which includes FPGA fabric. In fact, Xilinx contributed strongly
to defining AXI4 as an optimal interconnect technology for use within FPGA architectures
[16], [29].

Support for AXI was first introduced into the Xilinx tool flow in release 12.3 of the ISE®
Design Suite [25], and extensive support is now available in the Vivado Design Suite. AXI
buses can be used flexibly, and in the general sense are used to connect the processor(s)
and other IP blocks in an embedded system. In fact there are three flavours of AXI4, each
of which represents a different bus protocol, as summarised below. The choice of AXI bus
protocol for a particular connection depends on the desired properties of that connection.

• AXI4 [2] — For memory-mapped links, and providing the highest performance: an
address is supplied followed by a data burst transfer of up to 256 data words (or ‘data
beats’).
30

CHAPTER 2: The Zynq Device (“What is it?”)
• AXI4-Lite [2] — A simplified link supporting only one data transfer per connection
(no bursts). AXI4-Lite is also memory-mapped: in this case an address and single
data word are transferred.

• AXI4-Stream [1] — For high-speed streaming data, supporting burst transfers of
unrestricted size. There is no address mechanism; this bus type is best suited to
direct data flow between source and destination (non memory mapped).

The term ‘memory mapped’ is used in the above descriptions, and it is useful to briefly
confirm its meaning. If a protocol is memory mapped, an address is specified within the
transaction issued by the master (read or write), which corresponds to an address in the
system memory space. In the case of AXI4-Lite, which supports a single data transfer per
transaction, data is then written to, or read from, the specified address; in the case of AXI4
bursts, the address specified is for the first data word to be transferred, and the slave must
then calculate the addresses for the data words that follow.

2.3.2. AXI Interconnects and Interfaces

The primary interface between the PS and PL is via a set of nine AXI interfaces, each of
which is composed of multiple channels. These make dedicated connections between the
PL, and interconnects within the PS, as indicated in Figure 2.9. It is useful to briefly define
these two important terms:

• Interconnect — An interconnect is effectively a switch which manages and directs
traffic between attached AXI interfaces. There are several interconnects within the
PS, some which are directly interfaced to the PL (as in Figure 2.9), and others which
are for internal use only. The connections between these interconnects are also
formed using AXI interfaces.

• Interface — A point-to-point connection for passing data, addresses, and hand-
shaking signals between master and slave clients within the system.

Note from the diagram that all of the interfaces are specifically connected to AXI inter-
connects residing within the PS, with the exception of the ACP interface, which is
connected directly to the Snoop Control Unit inside the APU.

Internally to the processing system, AXI interfaces are used within both the ARM APU
(making connections between the processing cores and SCU, cache memory and OCM),
and more generally to connect the various interconnects within the PS. These connections
are in addition to those at the PS-PL boundary. In particular, the three interconnects shown
in Figure 2.9 (the Memory, Master and Slave Interconnects) are internally connected to the
31

CHAPTER 2: The Zynq Device (“What is it?”)
Central Interconnect, which is not shown here, but which is visible in Figure 2.2. Full
details of PS internal connections, including a block diagram showing all AXI intercon-
nects and interfaces, are available in [33].

 Table 2.2 provides a summary of the interfaces shown by the arrows in Figure 2.9. A
short description of each interface is given, and the master and slave are indicated (in
accordance with convention, the master is in control of the bus, and initiates transactions,
while the slave responds). Note that the interface naming convention (as in the left hand
column of Table 2.2) is to indicate the role of the PS, i.e. “M” is the first letter where the PS
is the master, and “S” is the first letter where the PS is the slave.

Figure 2.9: The structure of AXI interconnects and interfaces connecting the PS and PL

Programmable LogicProcessing System

SCU
S M

Memory Interconnect
S S S S

M M M M

Ma
ste

r
Int
er
co
nn
ec
t S

S

M

M
Sl
av
e

Int
er
co
nn
ec
t M

M

S

S

FIFOs

general
purpose

ACP interface

high performance interfaces

APU

interfaces
M_AXI_GP[1:0]

general
purpose
interfaces
S_AXI_GP[1:0]

S_AXI_ACP

S_AXI_HP[3:0]
32

CHAPTER 2: The Zynq Device (“What is it?”)

To further explain the roles of these different types of PS-PL AXI interfaces:

• General Purpose AXI — A 32-bit data bus, which is suitable for low and medium
rate communications between the PL and PS. The interface is direct and does not
include buffering. There are four general purpose interfaces in total: the PS is the
master of two, and the PL is the master of the other two.

• Accelerator Coherency Port — A single asynchronous connection between the PL
and the SCU within the APU, with a bus width of 64 bits. This port is used to achieve
coherency between the APU caches and elements within the PL. The PL is the
master.

• High Performance Ports — The four high performance AXI interfaces include FIFO
buffers to accommodate “bursty” read and write behaviour, and support high rate
communications between the PL and memory elements in the PS. The data width is
either 32 or 64 bits, and the PL is the master of all four interfaces.

Each bus is made up of a collection of signals, and transactions on these buses take place
in accordance with the defined bus standard, AXI4, which will be introduced next. It is

Table 2.2: Interfaces between PS and PL [33]

Interface Name Interface Description Master Slave

M_AXI_GP0
General Purpose (AXI_GP)

PS PL

M_AXI_GP1 PS PL

S_AXI_GP0
General Purpose (AXI_GP)

PL PS

S_AXI_GP1 PL PS

S_AXI_ACP Accelerator Coherency Port (ACP),
cache coherent transaction

PL PS

S_AXI_HP0 High Performance Ports (AXI_HP) with
read/write FIFOs.

(Note that AXI_HP interfaces are sometimes
referred to as AXI Fifo Interfaces, or AFIs).

PL PS

S_AXI_HP1 PL PS

S_AXI_HP2 PL PS

S_AXI_HP3 PL PS
33

CHAPTER 2: The Zynq Device (“What is it?”)
beyond the scope of the current discussion to describe the AXI buses and transactions in
depth, but we will return to this topic later in the book, in Chapter 19.

2.3.3. EMIO Interfaces

As mentioned in Section 2.1, several connections from the PS can be routed through the
PL to external interfaces, and this is referred to as Extended MIO, or EMIO.

EMIO involves signal transfer between the two domains, and is achieved through a
simple set of wire connections; consequently, not all MIO interfaces are supported in
EMIO, and some of those which are supported have reduced capability [33]. The connec-
tions are arranged in two 32-bit banks.

Interfaces routed through the EMIO are in many cases connected directly to the desired
external pins of the PL, as specified by the inclusion of appropriate entries in a constraints
file. In this mode, EMIO can provide an additional 64 inputs, and 64 outputs with corre-
sponding output enables. Another option is to use EMIO to interface the PS with a
peripheral block in the PL. Figure 2.10 depicts both of these use models.

2.3.4. Other PL-PS Signals

Other signals crossing the PS-PL boundary include watchdog timers, reset signals, inter-
rupts, and DMA interfacing signals. These will not be covered here, but later in the context
of embedded systems design using Zynq (Chapter 10), when their various functionalities
will also be explained.

Figure 2.10: Using the EMIO to interface between PS and PL

IP
core

32 32
PS

to / from PS

PL

IOBs

EMIO
bank 2

EMIO
bank 3
34

CHAPTER 2: The Zynq Device (“What is it?”)
2.4. Security

Traditionally, the deployment of secured, tamper-proof devices has mainly been of
concern to applications under the purview of defence or security. More recently, however,
with the growing trend of development and marketing of custom IP resources, the ability to
deploy devices which offer the ability to securely protect the internal software and
hardware IP has become an ever-increasing concern to markets such as avionics,
automotive, broadcast, industrial and wired/wireless networking and communications
[28].

Zynq-7000 devices provide a wide range of security features which offer protection of
the internal functionality of your system, ranging from dedicated hardware support for
multiple encryption standards, secure system boot facilities, and software execution
protection.

In this section, the security features of Zynq will be briefly introduced. It is outwith the
scope of this chapter to provide any great detail on the individual security aspects of Zynq,
but instead relevant features will be introduced. Further information on theses features can
be found in the cited references.

2.4.1. Secure Boot

One of the main architectural points of note with Zynq-7000 devices is that the boot
method is restricted to a single source — device boot must be driven by the processor.
When the device is powered on or reset, the first core of the PS boots from external
memories before going on to configure the PL [28]. By restricting the boot method to a
single source, it ensures that the there is no manual way to load malicious software after the
PL has been configured, and also no way to load a malicious image to the PL after the
processor has initialised.

A number of features have been incorporated into Zynq-7000 devices which facilitate
secure booting. One of these features is the boot ROM, which has been designed to handle
various forms of security. Both asymmetric and symmetric authentication of the First-
Stage Boot Loader (FSBL), U-Boot, PL bitstream and user software (OS and user applica-
tions) is supported. In the case of asymmetric authentication, RSA-2048 primary and
secondary public keys are used, where as HMAC (SHA-256) is used for symmetric authen-
tication. Further, encryption of the boot files mentioned above is supported with 256-bit
AES/CBC key which can be either volatile (battery backed up) or non-volatile (eFuses).

One other feature which facilitates secure boot is the OCM, which has been provided to
be large enough (256KB) to run the FSBL from an internal location which is immune to
35

CHAPTER 2: The Zynq Device (“What is it?”)
any external probing attack. The OCM is also large enough to securely store TrustZone®
software routines (more on these in the Zynq-7000 and ARM TrustZone Technology
subsection below).

2.4.2. Hardware Support

All Zynq-7000 devices benefit from a host of hardware security IP, which are imple-
mented either as hard IP blocks within the PS, or as soft IP in the PL. The functionality of
these security IPs includes anti-tamper, trust and information assurance, to protect the
system from power-on and through runtime [28].

Further to the available security IP, Zynq-7000 devices have a number of embedded
blocks which can support the creation of secured systems. Such blocks include authenti-
cation, decryption engines, key storage and unique device identification possibilities.

Some of the features of Zynq devices which relate to security are listed as follows [28]:

• ARM TrustZone support (PS and PL)

• AES-256 encryption (BBRAM key and eFUSE key)

• Secure Configuration and Boot (PS and PL)

• HMAC bitstream authentication

• FSBL RSA-2048 Authentication

• Hardened readback disable

• JTAG disable/monitor

• SEU checker

2.4.3. Runtime Security

The need for preventing unwanted access to the internal device data or memory doesn’t
end after the boot process has completed, and as such there is a need to provide runtime
security. By not employing runtime security on a device, confidential user or system data
might be compromised, along with the stability and operation of the system. In order to
prevent such compromise to your system, any malicious access to internal data, memory or
peripherals must be obviated.
36

CHAPTER 2: The Zynq Device (“What is it?”)
Runtime security can be split into three areas of protection, which are outlined as
follows:

• Processing System to Programmable Logic — The prevention of software running
on the Zynq PS from accessing hardware-based IP and slaves running in the PL.
Zynq devices have two methods of implementing such protection: (i) a Zynq-specific
implementation of ARM TrustZone technology (see the dedicated Zynq-7000 and
ARM TrustZone Technology subsection below), and (ii) based on the monitoring of
AXI port transaction from the master, and the corresponding slave address.

• Processing System to Processing System — Previous generations of embedded
systems were made up of an amalgamation of various independent subsystems,
which each, in turn, comprised of dedicated hardware, operating systems and
software. This architecture was inherently secure, in terms of runtime security,
because each subsystem made use of its own dedicated hardware (CPU, buses,
memory and peripherals.). With todays embedded systems, such as those based on
Zynq-7000 devices, making use of shared resources, such as the PS, PL and config-
urable interconnects, runtime security is of greater concern. It is therefore important
to ensure that shared resources have sufficient security in place.

One such area which must have sufficient security is the MMU:

- Memory Management Unit Security — By configuring MMU Page Tables in a way
that is security-aware, system security is improved by restricting the access of
unauthorised software applications and hardware drivers to specific memory
regions, devices, configuration registers and IP cores [28].

All members of the Zynq-7000 family have a dedicated MMU for each of the two
Cortex-A9 processing cores. The Page Tables of each of the MMUs allows for fine-
grained access to be controlled for the DDR Memory, OCM, system level control
registers, memory mapped blocks in the PS and memory mapped IP blocks
within the PL.

• Programmable Logic to Processing System / Programmable Logic — One of the
main advantages of the Zynq PL is the ability to easily instantiate multiple IP blocks
which can act as AXI masters (a MicroBlaze processor, for example). Such AXI
masters are subject to various levels of restriction which limits their access to slave
devices which are associated with the PS (such as CAN, Ethernet, GPIO and USB),
as well as other soft IP slaves instantiated in the PL [28].
Further to this, during system development, the developer has the freedom to
37

CHAPTER 2: The Zynq Device (“What is it?”)
control which slave addresses are accessible to any one master IP within the PL. This
functionality reduces the chances of a compromised master IP from accessing
restricted hardware.

Zynq-7000 and ARM TrustZone Technology

One feature of Zynq devices which can prevent such venerabilities is the Zynq-specific
implementation of ARM TrustZone technology [28]. The TrustZone architecture enables
trusted computing within embedded systems by establishing a hardware architecture
which is capable of spreading the security framework throughout the design of the system.
This is accomplished by running specific subsystems in either a “normal world” or a
“secure world”, rather than protecting the entirety of the systems assets in a single,
dedicated hardware resource [34]. By operating in this manner, and combined with
software which is capable of making full use of the offered advantages, TrustZone estab-
lishes a security solution which can operate from one end of a system to the other.

For Zynq devices, a normal world is defined as a subset of hardware comprising of
memory and L2 cache regions, and specific AXI devices [34]. Non-trusted software can
run in a normal world, but its access and awareness of additional hardware will be limited,
as it may be dedicated to the TrustZone architecture in the secure world. Software applica-
tions which are classified as trusted will execute in the secure world, which is a separate,
trusted environment isolated from the main OS to prevent any malicious access to the
embedded system.
38

CHAPTER 2: The Zynq Device (“What is it?”)
2.5. Zynq-7000 Family Members

At the time of writing, the Zynq product range comprises six different general purpose
Zynq-7000 devices, all with slightly different features and sizes. The prominent features of
these are summarised in Table 2.3 (extended details can be found in [32]).

Table 2.3: Zynq-7000 family members

Z-7010 Z-7015 Z-7020 Z-7030 Z-7045 Z-7100

Processor Dual core ARM Cortex-A9 with NEON and FPU extensions

Max. processor
clock frequency

866MHz 1GHz

Programmable
Logic

Artix-7 Kintex-7

No. of FlipFlops 35,200 96,400 106,400 157,200 437,200 554,800

No. of 6-input
LUTs

17,600 46,200 53,200 78,600 218,600 277,400

No. of 36Kb Block
RAMs

60 95 140 265 545 755

No. of DSP48 slices
(18x25 bit)

80 160 220 400 900 2020

No. of SelectIO
Input/Output
Blocksa

a. Depends on the package; maximum numbers are shown here. HR = High Range, HP =
High Performance.

HR: 100
HP: 0

HR: 150
HP: 0

HR: 200
HP: 0

HR: 100
HP: 150

HR: 212
HP: 150

HR: 250
HP: 150

No. of PCI Express
Blocks

- 4 - 4 8 8

No. of serial
transceivers

- 4 - 4 8 or 16b

b. Depends on package chosen.

16

Serial transceivers
maximum rate

- 6.25Gbps - 6.6Gbps /
12.5Gbps
c

c. Depends on the speed grade of the device.

6.6Gbps /
12.5Gbps
b

10.3Gbps
39

CHAPTER 2: The Zynq Device (“What is it?”)
As shown in the table, the main differentiator between the specific devices within the
Zynq family is the type and quantity (or ‘density’) of the programmable logic. Of the
general purpose Zynq family members, the smaller devices are based on Xilinx’ Artix-7
FPGA logic fabric, and the larger devices on the Kintex-7 logic fabric. Each of the six family
members provides a different amount of general purpose logic, Block RAMs, and
DSP48E1s, and naturally the overall processing capability of the PL section increases in
proportion to its resources. The PS is standard across all family members, the only
difference being that the maximum frequency of the ARM core differs: the PS on the Artix-
7 based devices can be clocked at up to 866GHz, the Kintex-based devices up to 1GHz.

There are also some other differentiating factors. In particular, PCI Express blocks and
high-speed communications interfaces are integrated within the PL section of select
devices, providing transceivers capable of operating at multi-Gbps rates [31].

 In addition to general purpose Zynq devices, there are also two automotive grade Zynqs
(based on the Z-7010 and Z-7020), and three defence grade Zynqs (based on the Z-7020,
Z-7030 and Z-7045). Both automotive and defence grade devices have an extended temper-
ature range compared to mainstream equivalents, while the latter additionally has rugge-
dised packaging and enhanced security features.

Given all of these factors, there are a wide variety of device options to choose from,
ensuring that Zynq is suitable for a number of applications.

2.6. Chapter Review

This chapter has reviewed the general architecture of the Zynq device, and detailed its
two component parts, the PS and PL, together with resources for interfacing between them.

The processing system was shown to include a dual-core ARM Cortex-A9 processor
with associated extensions for SIMD and floating point processing, grouped together in an
APU unit along with memory resources. The capabilities of the APU and its interfacing to
the rest of the processing system were highlighted. The internal structure of the PS as a
whole, and its connections with the programmable logic, were also explained.

The structure and resources of the programmable logic section were outlined, including
the fabric logic, Block RAM and DSP48E1 resources, and interfacing resources, and the
important issue of interfacing between the PL and PS using AXI was reviewed. Lastly, a
comparison was made between device members of the Zynq-7000 family.
40

CHAPTER 2: The Zynq Device (“What is it?”)
2.7. Architecture Reference Guide

This section acts as a visual guide to the list of references provided in Section 2.8, and is
included to help clarify helpful sources of detailed information relating to the basic archi-
tecture of Zynq as presented in this chapter.

Figure 2.11: General Zynq architecture and references

Application Processing Unit (APU)
(refer to Figure 2.12)

Processing System

AXI Interfaces - see [25]

Programmable Logic
(refer to Figure 2.13)

Package, pins, and IOBs
see [24]and [31]

Zy
nq

 A
rc

hi
te

ct
ur

e a
nd

 F
ea

tu
re

s
se

e Z
yn

q-
70

00
 T

ec
hn

ic
al

 R
ef

er
en

ce
 M

an
ua

l,
[3

3]
41

CHAPTER 2: The Zynq Device (“What is it?”)
APU

ARM

processor 0

NEON/FPU

L1(D) L1(I)

M

M

U

ARM

processor 1

NEON/FPU

L1(D) L1(I)

M

M

U

Snoop Control Unit (SCU)

L2 Cache OCM

Figure 2.12: Application Processing Unit - references

Floating Point Unit - see [7]

ARM Cortex-A9 MPCore- see [8]

ARM architecture - see [5]

NEON Processing Unit - see [9] & [15]
42

CHAPTER 2: The Zynq Device (“What is it?”)
Figure 2.13: Programmable Logic - references

DSP48E1 slices - see [17]

clock tiles - see [19]

XADC block - see [18]

Configurable Logic Blocks
see [20]

Block RAM - see [23]

Input/Output Blocks
see [24]

GTX transceivers
 see [21]

PCI Express block
 see [22]
43

CHAPTER 2: The Zynq Device (“What is it?”)
2.8. References

NOTE: all URLs last accessed June 2014.

[1] ARM, “AMBA 4 AXI4-Stream Protocol Specification”, v1.0, March 2010.
Available: http://www.arm.com/products/system-ip/amba/ (then “Download Specifications”).

[2] ARM, “AMBA AXI and ACE Protocol Specification: AXI3, AXI4, and AXI-Lite, ACE and ACE-Lite”,
February 2013.
Available: http://www.arm.com/products/system-ip/amba/ (then “Download Specifications”).

[3] ARM, “AMBA Open Specifications”, webpage.
Available: http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

[4] ARM, “Architectures, Processors and Devices Development Article”, May 2009.
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.dht0001a/
DHT0001A_architecture_processors_and_devices.pdf

[5] ARM, “ARM Architecture Reference Manual: ARMv7-A and ARMv7-R edition”, July 2012.
Available: https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR570-DA-70000-r0p0-
00rel1/DDI0406C_b_arm_architecture_reference_manual.pdf (account sign in required)

[6] ARM white paper, “The ARM Cortex-A9 Processors”, v2.0, September 2009.
Available: http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

[7] ARM, “Cortex-A9 Floating-Point Unit Technical Reference Manual”, revision r3p0, July 2011.
Available:
 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408g/DDI0408G_cortex_a9_fpu_r3p0_trm.pdf

[8] ARM, “Cortex-A9 MPCore Technical Reference Manual”, revision r3p0, July 2011.
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/
DDI0407G_cortex_a9_mpcore_r3p0_trm.pdf

[9] ARM, “Cortex-A9 NEON Media Processing Engine Technical Reference Manual”, revision r3p0, July 2011.
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0409g/
DDI0409G_cortex_a9_neon_mpe_r3p0_trm.pdf

[10]Freescale Semiconductor, “Reference Manual - M68HC11” (Section 8. Synchronous Serial Peripheral
Interface), Rev. 6.1, 2007.
Available: http://www.freescale.com/files/microcontrollers/doc/ref_manual/M68HC11RM.pdf

[11]“IEEE Standard for Floating-Point Arithmetic”, IEEE Computer Society, revision IEEE Std. 754-2008,
August 2008.

[12]“IEEE Standard Test Access Port and Boundary-Scan Architecture”, IEEE Computer Society, revision IEEE
Std. 1149.1-1990 including IEEE Std 1149.1a-1993, February 1990 and June 1993.
44

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR570-DA-70000-r0p0-00rel1/DDI0406C_b_arm_architecture_reference_manual.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR570-DA-70000-r0p0-00rel1/DDI0406C_b_arm_architecture_reference_manual.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0409g/DDI0409G_cortex_a9_neon_mpe_r3p0_trm.pdf
http://www.freescale.com/files/microcontrollers/doc/ref_manual/M68HC11RM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/DDI0407G_cortex_a9_mpcore_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408g/DDI0408G_cortex_a9_fpu_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408g/DDI0408G_cortex_a9_fpu_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0408g/DDI0408G_cortex_a9_fpu_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dht0001a/DHT0001A_architecture_processors_and_devices.pdf
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/
http://www.arm.com/products/system-ip/amba/

CHAPTER 2: The Zynq Device (“What is it?”)
[13]David A. Patterson and John L. Hennessy, Computer Architecture and Design: The Hardware / Software
Interface, 4th Ed., Morgan Kaufmann, 2012.

[14]Philips, “I2C Bus Specification and User Manual”, UM10204, Rev. 5, October 2012.
Available: http://www.nxp.com/documents/user_manual/UM10204.pdf

[15]Qin, Leon, “Using NEON for Parallel Data Processing; Zynq-7000 Hardware Architecture”, Xilinx
presentation, October 2012.
Available: http://www.xilinx.com/Attachment/53775/Neon_Introduction_for_Avnet_training.pdf

[16]R. Wilson, “Truth About Xilinx Love Affair with AMBA”, Electronics Weekly, 28th June 2010.
Available: http://www.electronicsweekly.com/articles/28/06/2010/48931/truth-about-xilinx-love-affair-
with-amba.htm

[17]Xilinx, Inc., “7 Series DSP48E1 Slice User Guide”, UG479, v1.7, May 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

[18]Xilinx, Inc., “7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-
to-Digital Converter User Guide”, UG480, v1.4, May 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf

[19]Xilinx, Inc., “7 Series FPGAs Clocking Resources User Guide”, UG472, v1.10, May 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

[20]Xilinx, Inc., “7 Series FPGAs Configurable Logic Block User Guide”, UG474, v1.5, August 2013.
Available: http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

[21]Xilinx, Inc., “7 Series FPGAs GTX/GTH Transceivers User Guide”, UG476, v1.10, February 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf

[22]Xilinx, Inc., “7 Series FPGAs Integrated Block for PCI Express Product Guide”, PG054, v3.0, June 2014.
Available: http://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-
7series-pcie.pdf

[23]Xilinx, Inc., “7 Series FPGAs Memory Resources User Guide”, UG473, v1.10.1, May 2014.
Available:
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

[24]Xilinx, Inc., “7 Series FPGAs SelectIO Resources User Guide”, UG471, v1.4, May 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf

[25]Xilinx, Inc., “AXI Reference Guide”, UG761, v14.3, November 2012.
Available: http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/
ug761_axi_reference_guide.pdf

[26]Xilinx, Inc., “LogiCORE® IP 7 Series FPGAs Transceivers Wizard v2.6 User Guide”, UG769, June 2013.
Available: http://www.xilinx.com/support/documentation/ip_documentation/gtwizard/v2_6/
ug769_gtwizard.pdf
45

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.xilinx.com/Attachment/53775/Neon_Introduction_for_Avnet_training.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/ip_documentation/gtwizard/v2_6/ug769_gtwizard.pdf
http://www.xilinx.com/support/documentation/ip_documentation/gtwizard/v2_6/ug769_gtwizard.pdf
http://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-7series-pcie.pdf
http://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_0/pg054-7series-pcie.pdf
http://www.electronicsweekly.com/articles/28/06/2010/48931/truth-about-xilinx-love-affair-with-amba.htm
http://www.electronicsweekly.com/articles/28/06/2010/48931/truth-about-xilinx-love-affair-with-amba.htm
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
http://www.xilinx.com/support/documentation/user_guides/ug471_7Series_SelectIO.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

CHAPTER 2: The Zynq Device (“What is it?”)
[27]Xilinx, Inc., “LogiCORE IP MicroBlaze Micro Controller System, Product Specification, DS865, v1.1, April
2012.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/
ds865_microblaze_mcs.pdf

[28]Xilinx, Inc., “Security Solutions” webpage.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/security.html

[29]Xilinx, Inc., “Xilinx and ARM Announce Development Collaboration”, press release, 19th October 2009.
Available: http://press.xilinx.com/2009-10-19-Xilinx-and-ARM-Announce-Development-Collaboration

[30]Xilinx, Inc., “Zynq-7000 All Programmable SoC Overview”, Preliminary Product Specification, DS190, v1.6,
December 2013.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

[31]Xilinx, Inc., “Zynq-7000 All Programmable SoC Packaging and Pinout Product Specification”, UG865,
v1.3, November 2013.
Available: http://www.xilinx.com/support/documentation/user_guides/ug865-Zynq-7000-Pkg-Pinout.pdf

[32]Xilinx, Inc., “Zynq-7000 All Programmable SoCs Product Table”, XMP087, v1.7.
Available: http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-combined-product-
table.pdf

[33]Xilinx, Inc., “Zynq-7000 Technical Reference Manual”, UG585, v1.7, February 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[34]Y. Gosain and P. Palanichamy, “TrustZone Technology Support in Zynq-7000 All Programmable SoCs”,
Xilinx White Paper, WP429, v1.0, May 2014.
Available: http://www.xilinx.com/support/documentation/white_papers/wp429-trustzone-zynq.pdf
46

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-combined-product-table.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-combined-product-table.pdf
http://www.xilinx.com/support/documentation/user_guides/ug865-Zynq-7000-Pkg-Pinout.pdf
http://press.xilinx.com/2009-10-19-Xilinx-and-ARM-Announce-Development-Collaboration

3

Designing with Zynq

(“How do I work with it?”)

his book aims to take a practical view, and therefore it is important to establish the
general flow and procedures for developing Zynq systems, and to outline the software tools
and hardware resources necessary to design for Zynq.

The chapter begins with a ‘getting started’ overview, which explains how to obtain and
configure the required design tools, and the basic setup for working with a development
board. Vivado, the suite of design tools provided by Xilinx for FPGA and Zynq design, is
reviewed, and the functionality of its components explained. Licensing options for Xilinx
software, and the role of third party tools in the design process are reviewed. The design
flow itself is then discussed. In doing so, we cover conceptual and practical aspects of
working with design tools to develop the hardware and software aspects of a Zynq system.

One of the key aspects brought out in this chapter is the system-oriented design
philosophy and design flow supported by the development tools. Towards the end of the
chapter, the discussion focuses on this fresh emphasis within the tools, and explains its
advantages, as well as the evolution from the earlier design suite for FPGA design, ISE. A
specific section is included to clarify the correspondence between tools in the two suites,
for those who may be familiar with ISE but not Vivado.

Finally, a summary of currently available Zynq development boards is provided, and a
brief overview of available support and documentation resources is included.

T

47

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.1. Getting Started

If you are new to Zynq, then you may be wondering what is required in order to get
started with your first design, and where to look for support. This section provides a brief
summary. More detail on each aspect will be provided during the remainder of the chapter.

3.1.1. Obtaining Design Tools

To start designing for Zynq, you will need to obtain the appropriate design tools from
Xilinx. These can be ordered on DVD, or downloaded from the Xilinx website at the URL:

http://www.xilinx.com/support/download/index.htm

(Alternatively, the download page can be accessed by following the Downloads link from
the Xilinx home page).

There are a number of design tools available, but you will need only the following:

• Vivado Design Suite (version 2014.1 or later)

Note that Vivado can be downloaded as a full version, or with customs selections of tools
and target boards, based on user preferences. You may also note the presence of the ISE
Design Suite in the list of available downloads, but this is not required (Vivado replaces ISE
for newer devices like the Zynq). Further explanation is provided in Section 3.5, which
compares elements of the Vivado and ISE Design Suites for readers who may be experi-
enced with the older tool flow. However, please note that the ISE Design Suite is not recom-
mended for new designs, and instead Vivado should be adopted.

Aside from the tools themselves, it is worth highlighting the Documentation Navigator
utility, which is a very useful option. This provides an easy way to access all of the relevant
user guides and other support documents:

Finally, if used in a network license configuration, then the following separate download
will be required for installation on the license server machine:

• License Management Tools (2014.1 Utilities or later)

This download is not needed for standalone licensing methods.

Further guidance about downloading and installing design tools can be found in [27] (or
check for the version of this document corresponding to your desired version of Vivado
Design Suite).
48

http://www.xilinx.com/support/download/index.htm

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.1.2. Design Tool Editions and Licensing

The Vivado design tools are available in different editions, all of which may be installed
from the same set of downloaded files (as outlined in Section 3.1.1), but which are differen-
tiated by licence type. Licensing is administered online via a Xilinx user account.

There are three licence options for Vivado: WebPACK, Design Edition, and System
Edition, the primary features of which are summarised in Table 3.1. The WebPACK edition
is a free version, including all of the core software for creating first designs with Zynq:
Vivado Integrated Development Environment (IDE) for hardware design, SDK and GNU
Compiler Connection (GCC) compiler for software development, and Vivado Simulator
for verification. A time-limited evaluation version of the System Edition can also be
obtained.

Licenses can be configured either as server / floating licenses (i.e. a bank of licenses
hosted on a network license server), or as individual licenses fixed to specific computers

Table 3.1: Versions of the Vivado Design Suite [23]

Design Phase Feature WebPACKa

a. The WebPACK edition is free, with features as listed in the table, and is device limited: it
supports Zynq devices, and a subset of Artix and Kintex FPGAs. Refer to [27] for device
limitation details.

Design
Edition

System
Edition

IP Integration and
Implementation

Integrated Design
Environment (IDE)

Included Included Included

Software Development
Kit (SDK)

Included Included Included

Verification and
Debug

Vivado Simulator Included Included Included

Vivado Logic Analyser - Included Included

Vivado Serial I/O
Analyser

- Included Included

Design Exploration
and IP Generation

Vivado High-Level
Synthesis (HLS)

- - Included

System Generator for
DSP

- - Included
49

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
(‘node-locked’). The WebPACK edition is free to obtain, and available as a node-locked
license only.

3.1.3. Design Tool Functionality

The functionality of the various tools listed in Table 3.1 will be explained as required
throughout the rest of the book, starting in Section 3.2 of this chapter when the design flow
is discussed in detail. As the discussion will illustrate, Vivado IDE and SDK provide the
bases for hardware and software system design, respectively, and therefore might be
considered the two most important tools in the suite [4].

Vivado IDE is an integrated development environment for creating the hardware system
part of the SoC design, i.e. the processor, memories, peripherals, external interfaces and
bus connections. Vivado IDE interacts with other tools in the Vivado Design Suite, and also
includes facilities for integrating and packaging IP, which enhances possibilities for design
reuse.

SDK is a software design suite based on the popular Eclipse platform, which includes
driver support for all Xilinx IPs, GCC library support for ARM and NEON extensions
using the C and C++ languages, and tools for debugging and profiling [2], [29].

Of the verification and debugging tools, Vivado Simulator represents a Hardware
Description Language (HDL) simulator environment for testing the hardware components
within the system. The Vivado Logic Analyser provides facilities for ‘in-system’ verification
of the design: specific additional cores are included in the hardware design and imple-
mented on the Zynq device to enable probing of on-chip behaviour during run-time; the
captured data is then transmitted back to the host PC where it may be viewed in a logic
analyser [26]. Vivado Serial I/O Analyser is, as its name suggests, a similar tool catering
specifically for the high speed communications interfaces.

The Vivado High-Level Synthesis (Vivado HLS) and System Generator for DSP tools
are specifically used for creating, testing and managing IP for inclusion in the hardware
system. System Generator is a block-based tool which is used for creating and simulating
DSP designs, and it will be featured in Chapter 13 along with other methods of IP creation.
Vivado HLS is a design tool for hardware synthesis from C-level descriptions, and is the
subject of a special focus chapter later in the book (Chapter 15). This method of design
creation is potentially a rapid one, allowing subsystems to be described at a high level of
abstraction, and it is particularly relevant in today’s electronics industry where time-to-
market is an increasingly important factor.
50

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.1.4. Third Party Tools

The Vivado design suite supports certain third party tools, details of which may be
found in [27] (or check the Xilinx website for the most recent version).

Of these, the majority are swappable replacements for certain tools within the Vivado
design suite; for example, a particular HDL simulator (such as Aldec® Active HDL® or
Mentor Graphics® ModelSim® or Questa®) may be preferred in place of the Vivado
Simulator. Likewise there is potential to utilise a third party synthesis tool like Synopsys®
Synplify® or Synplify Pro®.

A notable exception to the above relates to the System Generator tool. This is hosted in
the MathWorks® MATLAB® / Simulink® environment, and therefore relies on the MATLAB
and Simulink third party software products in order to function [6]. Two associated
MathWorks components, the Signal Processing Toolbox and DSP System Toolbox, are
additionally needed to support most DSP designs. One of the particular advantages of
System Generator as a development environment is that the developer can exploit all of the
capabilities of MATLAB and Simulink for scripting, simulation, visualisation, and file I/O,
together with the specific facilities of any additional toolboxes that may be available (e.g.
image processing, communications, etc.).

As a general point, it is important to note that particular versions of third party software
may be required for compatibility with the installed version of the Vivado suite, as detailed
in [27], hence it is recommended that these details are checked prior to installation.

3.1.5. System Setup and Requirements

The reader is again referred to [27], or the version of that user guide corresponding to
their installation, for detailed information regarding supported operating systems, as this
may change over time. As a general statement, recent versions of Windows and selected
versions of Linux are supported. When using Vivado, it is important that the OS grants the
user write permissions for all directories containing design files.

Naturally the hardware specification of the development computer is significant, as this
influences execution times when running the design tools. Xilinx does not publish system
recommendations, but does provide an indication of memory requirements by target
device [21]. It is particularly notable that 32-bit operating systems are not suitable for
targeting the two largest Zynq devices. At least 4GB of RAM is recommended for the three
smaller devices, while the largest may require up to 12GB of RAM. Generally speaking, at
least a dual-core processor is recommended, and some of the design tools have multi-core
processing support, i.e. they can exploit processors with multiple cores.
51

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
The computer hardware configuration also requires a USB port for programming the
Zynq over JTAG, and ideally another for PC-Zynq communication via the UART and
Terminal application (this is a common and useful method for debugging designs).

Finally, as implied above, the user should have a Zynq development board on which to
prototype and test their designs. A development board hosts a Zynq device, together with
various other resources such as power circuitry, external memory, interfaces for
programming and communication, simple user I/O such as buttons, LEDs, switches, and
usually a number of other peripheral interfaces and connectors. During the debugging
stage, designs developed on the computer using the Vivado design suite can be downloaded
onto the development board using a Joint Test Action Group (JTAG) or ethernet
connection, then tested in hardware, using peripherals and external interfaces if required.
Debugging may include, for instance: using a debugger to interact with the processor and
monitor its behaviour; user interaction with the design running on the chip via a USB-
UART connection and the Terminal interface on the PC; and by executing hardware-in-
the-loop simulations with the aid of an ethernet connection.

The topic of development boards will be returned to in Section 3.6, when a review of
currently available boards will be presented (note that the selection may expand over time).

Taking all of the factors discussed in this chapter so far into consideration, Figure 3.1
provides a graphical summary of a typical setup for getting started with Zynq.

Figure 3.1: Zynq development setup

Windows / Linux
computer

4GB+ RAM

Xilinx design tools
(3rd party tools)

USB (UART)

USB (JTAG) power

Zynq development board
52

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.2. An Outline of the Design Flow

Having established the software and hardware requirements for starting out designing
for Zynq, we next return to the topic of the design flow, which was first introduced in
Chapter 1. Figure 3.2 represents an augmented diagram, including references to the
relevant design tools. This will form the basis of our discussion over the next few pages.

System Design

Software / Hardware

Partitioning

SpecificationSpecification

Requirements

Hardware

Development

(VIVADO)

System Design

IP Integration

Constraints

Interfacing

Floorplanning

Implementation

Testing...

Software

Development

(SDK)

Board Support

Software Design

Debugging

OS Integration

HW Interfacing...

ha

rdware / software

integration & testin
g

iteration

Sources of IP:

VHDL/Verilog

System Generator

Vivado HLS

IP Catalogue

Third party IP

...

Sources of software:

Drivers / Libraries

Custom code

Standard OS

Third party SW

...

System Booting

System Integration

and Final Testing

Embedded co-debug

(hardware/software co-trigger)

Figure 3.2: The design flow for Zynq SoC (expanded model)
53

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
This represents the flow that a single designer would undertake if completing the design
by themselves, and is equivalent to following the practical examples. In Section 3.3, we will
consider a team-based design flow, which is more representative of development in
industry, and a task for which the Vivado Design Suite is naturally well-suited.

3.2.1. Requirements and Specification

As in any project, the starting point will be a specification of the system to be designed,
based on an assessment of project requirements. It goes without saying that it is important
to define the system parameters as fully and accurately as possible before embarking on
practical design work.

The specification will include aspects such as the intended functionality of the design, its
interfaces, performance criteria and the target device or platform. Although the initial
specification is defined in as much detail as possible at the outset, it is likely to be refined,
and the level of detail extended, as the project proceeds. The exact content of the specifi-
cation will of course depend on the requirements and scope of the project.

3.2.2. System Design

Design of the system architecture is usually approached from a top-down perspective.
This means defining the top-level system interface and parameters first, before identifying
the individual subsystems or functional tasks. Subsystem functionality and required
performances, as well the various interactions between them, would then be defined. The
output of this stage is likely to be an abstract representation of components and transac-
tions. Depending on the complexity of the design, these subsystems may be further decom-
posed into lower levels of hierarchy.

Then, having defined the functional units, the design must be appropriately partitioned
into hardware and software, and the necessary communications between different parts of
the system defined. Generally speaking, software (on the PS) will be used to implement
general purpose sequential processing tasks, an operating system, user applications and
GUIs, while computationally intensive data flow parts of the design are more suitably
realised in the PL. Furthermore, any software algorithms which exhibit significant paral-
lelism can be identified are strong candidates for implementation in PL; this corresponds to
a ‘coprocessor’ model where computationally intensive but parallel tasks can be off-loaded
from the processor into hardware to achieve an overall performance increase [15].

One of Zynq’s particular advantages is the close coupling between the processor and
programmable logic, which reside on the same physical device. The low latency, high
performance AXI links between the PS and PL allow the differing properties of these two
54

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
resources to be maximally exploited when partitioning the system into software and
hardware elements. This is due to the reduced overhead of communicating between them
as compared to a discrete-component alternative.

Knowledge of the Zynq architecture also enables the designer to make appropriate use of
special resources like the NEON and FPU in the PS, and the BlockRAMs and DSP48E1
slices in the PL. The high-speed interfaces for external communications that are integrated
into the device can also be utilised as needed.

It is significant that the Vivado flow places a particular emphasis on system design.
Vivado IDE is the natural starting point, and acts as the ‘cockpit’ within which the top-level
design is created. The integration between this tool and others within the suite (in
particular System Generator and Vivado HLS) then supports population of the subsystem
blocks with functional design units. Once the hardware design is completed, it is exported
to SDK for software development, with design iterations undertaken by returning to
Vivado IDE and then SDK if required. In a team-based development scenario, software
development may be progressed in parallel with the hardware system.

3.2.3. Hardware Development and Testing

Development of the hardware system involves designing the peripheral blocks and other
logic to be implemented in the PL, creating the appropriate connections between these
blocks and the PS, and suitably configuring the PS. For example, a hardware system might
include interfaces to a CAN bus, a UART for debugging, and GPIO, along with hardware
coprocessors to support software running on the ARM. The system is visualised in Figure
3.3.

The development of the hardware system is undertaken in the Xilinx Vivado IDE devel-
opment suite. The designer can sketch out their desired system with blocks originating
from an IP library, parameterise the blocks, and design appropriate internal connections
and external ports. This process is undertaken using the IP Integrator component of
Vivado, which will be presented in greater detail later in the book, in Chapter 18.

Figure 3.4 shows an example screenshot of an IP Integrator design. There is a block
representing the Zynq PS (seen here at the bottom left), a further block associated with
resetting the PS, a peripheral, and an AXI interconnect block. The major connections
between blocks are made using AXI interfaces. External ports are shown at the right hand
side of the diagram.

There are various mechanisms available for testing the hardware system. Firstly, while
building it in IP Integrator as a block diagram, a set of Design Rule Checks (DRCs) are
55

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
applied. These ensure the fundamental completeness and integrity of the design by, for
example, checking that all required connections are made correctly. Once satisfied with the
diagram, the system is then synthesised and implemented. Each of these stages involves
more detailed processing and integrity checking of the design, and errors are flagged by
Vivado if there are problems requiring attention.

The original source of IP blocks implemented in the PL may be:

• The Xilinx library

• Third party sources

• Designed by the User, or by colleagues within the same organisation (‘in-house’)

Depending on the source of the block, it may already have been verified as an
independent entity. IP from the Xilinx library is provided on a pre-verified basis, but blocks
from third parties may not be. Any IP you design in-house, together with third party
blocks not already verified, should be validated as standalone blocks before integration into

PS

ARM

Processor

Hardware

Coprocessor A

AXI

AXI

AXI

PL

M
IO

CAN

UART

GPIO

external

interfaces

Software

Application

Hardware

Coprocessor B

Figure 3.3: Conceptual diagram of an example hardware system with MIO
56

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
an embedded system. Depending on the design method, this may take place using HDL
simulation, or simulation in MATLAB / Simulink, for example. Further discussion of the
creation, testing and management of IP will appear in Chapters 13 to 18.

 The hardware system is usually tested in conjunction with the software that is deployed
upon it, i.e. while the hardware is operational in the context of the integrated system.
Certain desired signals can be marked for debug in the IP Integrator block diagram, i.e.
specified for inclusion in the hardware testing session. Later, at the point of running the
software upon the hardware system, these signals can be inspected in a waveform viewer
on the host PC.

Another powerful method of testing is Hardware In the Loop (HIL). Using this method,
part of the design runs on a development board and signals are returned to the simulation
environment for inspection. For instance, Xilinx provide a tutorial wherein the PS runs on
the board, while a PL component is exercised in simulation [19]. This provides an oppor-
tunity to inspect the PL signal behaviour resulting from real PS operation in detail.

 Once an iteration of the hardware system has been completed, the project is exported to
SDK for work on the software portion of the design. Further design iterations may follow,

external

ports

AXI Interconnect

Zynq PS

Peripheral
Zynq PS reset

Figure 3.4: An example IP Integrator block diagram
57

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
involving a return to Vivado and changes to the IP Integrator design or further partitioning
of software to hardware. Design teams are likely to adopt an approach wherein the software
and hardware sub-teams progress and iterate the two aspects in parallel.

3.2.4. Software Development and Testing

Given that Zynq is a flexible platform, the hardware system on which the software
operates can vary. The project exported from Vivado into SDK represents the customised
hardware upon which the software is based; usually this is referred to as the ‘hardware base
system’ or ‘hardware platform’. It corresponds to the configuration designed in IP
Integrator, such as the system shown in Figure 3.4.

The software system can be thought of as a stack, or set of layers, which is built upon the
Hardware Base System as shown in Figure 3.5.

The layer directly above the Hardware Base System is the Board Support Package (BSP),
the set of low-level drivers and functions that are used by the next layer up (the Operating
System) to communicate with the hardware. Software Applications run on top of the
Operating System — these collectively represent the uppermost layer in the software stack,
and the highest level of abstraction from hardware.

Software
Stack

from Vivado
(custom hardware)

Hardware Base System

Board Support Package

Operating System

Software Applications

Figure 3.5: Hardware and software layers of a Zynq design
58

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
When creating the software stack, the first design choice is usually to decide on the OS
to deploy: this can be a fully-fledged OS such as Linux or Android; an embedded OS; a
Real-Time Operating System (RTOS) for deterministic, time-critical applications; or
Standalone, a ‘light’ OS including only the most basic functions [22]. It is also possible for
applications to communicate directly with hardware, and this is often referred to as a ‘bare-
metal’ application. With two processor cores available, there is also the possibility of
deploying two different types of OS, one on each core. This theme will be explored in
Chapter 21, and is also outlined in the introductory part of the Zynq-7000 All Program-
mable SoC Software Developers Guide [33].

The BSP is tuned to the hardware base system, allowing an OS to operate efficiently on
the given hardware. The BSP is customised to the combination of base system and
operating system, and includes hardware parameters, device drivers, and low-level OS
functions. Therefore, in terms of Vivado / SDK development, the BSP should be refreshed
if changes are made to the hardware base system. SDK provides the environment for
creating BSPs, and developing and testing software for deployment in the upper layers. It
also supports the creation of BSPs for use in third party development tools such as ARM
Development Studio 5 (DS-5), which may be used in place of Xilinx SDK if desired [33],
[36].

In terms of testing, SDK contains the Xilinx Microprocessor Debugger (XMD) and
System Debugger (TCF) utilities, which are features for testing software while it is running
on the target hardware platform, i.e. a form of HIL. This process can be undertaken by
programming the PL part of the Zynq with a bitstream (*.bit file), and running the software
(*.elf file) on the PS. Programming is usually accomplished by downloading the files from
the host PC over a JTAG connection, or via Ethernet. In this way, both the PS- and PL-
based components of the system are implemented and form part of the test. The GDB
debugger is a further alternative (built upon XMD) that facilitates remote debugging.
Another alternative is to utilise the in-built Vivado Simulator to recreate the operations of
the PL on the host PC [19].

Should the results of testing prompt alteration to the hardware system, the designer can
return from SDK to Vivado and make the appropriate changes, before re-exporting the
hardware to SDK, updating the BSP, and resuming the software design and testing
processes. This software-hardware iteration loop is depicted in Figure 3.2.

It is important to note that not all designs require both an Executable Linkable Format
(ELF, *.elf) file and a BIT (*.bit) file to configure the device. The purpose of ELF files is to
program the PS, while BIT files are used to program the PL. Therefore, if only one part of
the Zynq device is used (PS or PL), then only the corresponding file type is needed.
59

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
Further information about the GNU compiler, debugging and programming tools can
be obtained from the Embedded System Tools Reference Manual [17].

3.2.5. System Integration and Testing

System integration is partly accomplished through the development and combined
testing of the software and hardware elements of the design. However, there are other
factors which need to be taken into consideration too.

System-level debug occurs after the software and hardware components have been
individually tested and verified during their separate development and testing stages. Even
though both components may be working in isolation, when brought together for the first
time, new problems may arise. One method of debugging these system-level problems is
through the use of embedded co-debug with hardware/software cross-trigger. This process
links the Integrated Logic Analyzer (ILA) hardware debug core in the PL with the Fabric
Trace Module (FTM) of the Zynq PS via a pair of trigger in and trigger out signals [20].

When performing co-debug with hardware/software cross-trigger, both the software
and hardware development tools are brought together. This allows the user to use break-
points in the software to trigger hardware data capture and, conversely, hardware break-
points can halt application debug in the software development environment [20].

Another factor to consider is the method of configuring the device. During development
and debugging, the Zynq is typically configured by downloading files from the host PC
over a JTAG or Ethernet connection. However, this is generally unsuitable for operation in
the field, and it is more usual to boot and configure the Zynq from flash memory [33], [34].
Specific development and validation of the booting process is therefore required in prepa-
ration for system deployment.

3.3. SoC Design Teams

 SoC designs are often developed by teams rather than individuals. A design team may
comprise specialists in system-level, hardware, software, and firmware design, and testing.

As shown in the model of the design flow depicted in Figure 3.2 on page 53, a stage of
high-level system design must be completed before hardware or software design can
commence. This seeks to define the structure of the system, interfaces, internal and
external transactions, constraints, and hardware / software partitioning. There may be
system design specialists who lead this process.
60

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
Once the high-level design is settled, its individual threads can be progressed. To make
best use of resources, hardware engineers and software engineers should be able to progress
these aspects of the system concurrently. For example, there may be:

• A hardware design team responsible for architecting and implementing the
hardware system, including the design, reuse and integration of IP blocks;

• A firmware design team responsible for designing the boot loader and implementing
the drivers necessary to interface software and hardware; and

• A software design team focussing on designing and coding the software elements of
the system, and integration with other incorporated elements such as standard
operating systems.

Each of these elements will require to be independently verified, and this can involve
various techniques including software simulation, RTL simulation, hardware-in-the-loop,
the use of virtual platforms, board-based testing, etc. There will be a final integration and
testing phase at the end of the project, when all teams will work towards combining their
system elements together, and ensuring the desired functionality is achieved. Where
necessary there may be further design iterations until the final product is fully tested and
meets all requirements.

One of the particular challenges of developing large and complex systems is the
definition and management of IP block interfaces in the design, and the integration of
these blocks at the system-level. It can be time consuming and error prone to design
connections between blocks that use different interfaces, and difficult to successfully
integrate them into the system. Vivado and IP Integrator provide a framework to make IP
integration faster, easier and less error prone, through support for the industry standard
AXI bus interface. This also makes it easier to share and reuse IP blocks between projects,
and to acquire new IP from third parties. Vivado features an extensive library of pre-
verified IP blocks than can be used in this way, and there is also a wide range of third party
IP available. The use of AXI also helps software and hardware teams to progress concur-
rently, because the AXI standard protocols are well defined.

Another potential difficulty is the need to re-partition the design some way through the
development process; for example if the software team discovers that a certain function is
more computationally demanding than first envisaged, and would benefit from hardware
acceleration. One of the benefits of the Vivado Design Suite is that its Vivado HLS tool can
synthesise high-level C code to hardware, meaning that conversion of a software routine to
61

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
hardware can potentially be undertaken very rapidly based on the existing C code, without
the requirement to develop a hardware coprocessor from scratch.

3.4. System-Level IP-Focused Design with Vivado

One of the major factors in modern systems design is the potential for design reuse and
rapid development. Time to market is critical in many application areas, and design tools
that accelerate the development process, crucially without compromising the robustness of
the verification stage or quality of results, bring clear advantages.

The Vivado design flow is based on these principles, and is built on the premise that
many system building blocks are exactly that — ready pieces of IP that can be integrated
into a project. Unlike older design methods, which typically cater for building systems
entirely from the ground up, Vivado focuses instead on exploiting the pre-verified IP
available in the Vivado libraries (i.e. cores developed by Xilinx), third party IP developers,
or the previous exertions of the designer (and his or her team). To a large extent, the focus
of the task has shifted upwards to system integration, rather than low-level hardware
design, and the features of the Vivado Design Suite reflect this. Having said that, there is
also scope for undertaking custom logic design if the system calls for it.

IP Integrator, used to design the example system shown in Figure 3.4, is the primary
embodiment of this IP-focused design method. IP Integrator is a feature of the Vivado
Design Suite, with which the designer is able to adopt the same ‘top-down’ approach they
would naturally take in conceiving the system hierarchy. IP instances can either be intro-
duced from the existing catalogue where appropriate, or created as black boxes for later
population with functional subsystems, and the interfaces between these various elements
established. This approach lends itself to rapid development of the hardware system.

An example of IP instantiation is provided in Figure 3.6, which shows a view of the
Vivado IP catalogue (note that only a small selection of IPs are visible). Here, a CoOrdinate
Rotation DIgital Computer (CORDIC) IP has been selected and dragged into the
workspace, or ‘canvas’. Following this, the designer would then configure the parameters of
the CORDIC design unit, as shown in Figure 3.7, and connect it to other blocks as appro-
priate to the system being created.

 The success of the IP integration stage relies on consistent behaviour and interfacing of
IPs. To support this, the Vivado Design Suite includes a related feature, IP Packager, that
enables IP to be consolidated into standard packages (based on the IP-XACT standard)
with the aim of facilitating future design reuse. This is the recommended practice for IP
developers and design teams to adopt; in this way, IP designs are made maximally portable
62

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
and reusable. From a design team perspective, building up an in-house repository of easily
reusable IP, shared across the organisation, is a compelling method of accelerating product
design cycles. IP Packager will be featured in detail in Chapter 18.

There are several tools and design creation techniques that can be used to generate IPs.
For example, they may be coded from a HDL such as VHDL or Verilog; generated from a
high-level C description by the Vivado HLS tool; or from a System Generator block
diagram. These methods will be explored further in Chapter 13.

 As a final note on Vivado, it should be highlighted that, although we predominantly
feature the GUI aspect of the tools in this book, all of the design tasks may also be under-
taken using the industry standard Tool Command Language (TCL) scripting language.
This represents a very powerful, repeatable and parameterisable method of driving the
design tools.

design canvas

Figure 3.6: A CORDIC IP block is introduced into an IP Integrator system from the catalogue
63

CHAPTER 3: Designing with Zynq (“How do I work with it?”)

3.5. The ISE and Vivado Design Suites

Vivado has a considerable number of advantages but, as a relatively new development
environment, it may be unfamiliar to some readers. This section is intended to clarify the
components within the Vivado Design Suite, and to highlight the differences and similar-
ities with the preceding ISE Design Suite at a practical level (i.e. in addition to the evolution
of design philosophy as discussed in Section 3.4). We also provide some brief notes on
upgrading existing projects from ISE to Vivado.

3.5.1. Features Comparison

It is useful to summarise Vivado’s predecessor, the ISE Design Suite, and to draw
parallels between the various components of the two. The intention is to enable those with
experience of working with ISE (but not Vivado) to more easily identify the corresponding
aspects of the newer tool suite. This information is presented in Table 3.2.

Figure 3.7: Parameterisation of the CORDIC IP block
64

CHAPTER 3: Designing with Zynq (“How do I work with it?”)

Table 3.2: Correspondence between Vivado and ISE Design Suites

ISE Vivado Comments

ISE Project
Navigator

Vivado IDE These tools are all used for FPGA and Zynq
hardware design. Vivado IDE replaces ISE
Project Navigator and PlanAhead in the
design flow, and has enhanced functionality
and library support. PlanAhead and ISE have
similar core functionality, but PlanAhead also
has pin and device planning and visualisation
facilities.

PlanAhead Vivado IDE

Xilinx Synthesis
Technology
(XST)

Vivado Synthesis Vivado Synthesis is an enhanced synthesis tool
for 7 series and subsequent devices.

ISim Vivado Simulator Vivado Simulator is visually similar to ISim,
but it has a new simulation engine with
improved performance.

Xpower Analyzer Vivado Power
Analyzer

For evaluating the power consumption of
designs operating on a target device.

System Generator System Generator For block-based DSP design. No significant
functional changes, but System Generator sys-
tems can now be generated to Vivado IP cores.

AutoESL Vivado HLS Tools for developing IP from high-level C,
C++ or System-C descriptions. Vivado HLS
represents a rebranded and enhanced version
of AutoESL.

Xilinx Platform
Studio (XPS)

IP Integrator XPS is used to architect embedded hardware
systems using lists, options etc. IP Integrator
provides an enhanced graphical environment
for undertaking the same task.

Software
Development Kit
(SDK)

Software
Development Kit
(SDK)

For software systems development. No
changes to the purpose or general functional-
ity of this component.
65

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
Some of the changes to the software suite are very noticeable, and lead the designer to
work in a different way. For example, ISE’s Xilinx Platform Studio (XPS) and Vivado’s IP
Integrator are both environments for designing the hardware aspect of embedded systems,
but they have very different user interfaces. XPS uses a series of drop-down lists and text-
based configuration options, whereas IP Integrator provides a more graphical interface.
Other changes are more subtle; for instance, the synthesis and place & route engines in
Vivado constitute improvements over ISE, but these are largely transparent to the user. For
more background on this topic, the reader is referred to [9] for an excellent discussion of
the origins of the ISE Design Suite, and Xilinx’ reasons for reinventing their development
tools in the form of Vivado.

It is also worth reiterating that the Vivado flow supports 7 series and Zynq-7000 devices
onwards, but is not compatible with older devices (Spartan®, Virtex®-6 and previous
FPGAs). Meanwhile, ISE’s device support will not extend beyond the 7 series.

3.5.2. Upgrading to Vivado

It is recommended that all new designs are started in the Vivado suite. From version
2013.2 onwards, Vivado has full support for Zynq and, as noted over the last few pages, the
IP-centric Vivado design flow is more suitable for systems design, speeding up the design
process.

The potential exists to migrate projects created in the ISE flow to Vivado, but not to
traverse in the opposite direction. For instance, XPS designs can be updated to IP
Integrator, and ISE / PlanAhead projects to Vivado. It is beyond the scope of this book to
explain procedures for migration from the ISE flow to Vivado, but comprehensive guidance
is available in [24].

ChipScope Vivado Logic
Analyzer

For probing and inspection of real-time signal
behaviour on physical devices. The Vivado
Logic Analyzer is underpinned by updated
hardware cores.

iMPACT Vivado Device
Programmer

Tools for scanning the hardware chain and
configuring the identified devices by down-
loading programming files.

Table 3.2: Correspondence between Vivado and ISE Design Suites

ISE Vivado Comments
66

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
One further important difference between ISE and Vivado is that of the constraints file
type. In the ISE flow, the UCF file (*.ucf) is used (the acronym standing for User
Constraints File), whereas in the Vivado flow, the XDC (*.xdc) file type is adopted (Xilinx
Design Constraints). The new file type brings compatibility with the industry standard
Synopsys Design Constraints [16], augmented with some specific Xilinx constraint types.
The syntax for expressing constraints in XDC files differs significantly from UCF, hence
established users of ISE should familiarise themselves with the new style. An explicit
conversion is required to update UCF files to XDC [24], [25].

Users of System Generator may also notice the major upgrade of the MATLAB /
Simulink interface at version 2012b (this is independent of the ISE to Vivado upgrade, but
is nonetheless worth being aware of). The improvements are chiefly aesthetic, but there is
also a difference in file types: Simulink models previously had the file extension *.mdl, and
they are now by default *.slx. Any new models created will automatically use the new file
type, which System Generator supports without issue. Any older models created as *.mdl
files may still be opened, manipulated and saved, while new models may also be saved as
*.mdl for backwards compatibility, if desired.

3.6. Development Boards

At the time of writing. there are a number of development boards available for Zynq, and
this section is dedicated to providing an overview of each of these boards. Please bear in
mind that others may be released between our time of writing and your time of reading!

Evaluation boards play an important role in the development process, and may be used
extensively for incremental testing as the design progresses. They usually have a variety of
peripheral interfaces to facilitate prototyping for communications, DSP, video processing,
and many other applications, and come supplied with reference designs to demonstrate the
use of these facilities.

3.6.1. Zynq-7000 SoC ZC702 Evaluation Kit

This evaluation kit features a board equipped with a Z-7020 Zynq device, which is based
on the Artix-7 PL fabric. The kit itself includes a number of components as shown in
Figure 3.8; this represents a typical ‘evaluation kit’ content. The various different parts are
numbered and their descriptions provided after the figure, for clarification.
67

CHAPTER 3: Designing with Zynq (“How do I work with it?”)

The numbered components in Figure 3.8 are as follows:

1. ZC702 Evaluation Kit packaging

2. Power adapter and US power cable

3. EU and UK power cables

4. Ethernet cable

5. AMS 101 Evaluation Board (ADC expansion board)

6. ZC702 Zynq Evaluation Board

7. SD memory card

8. Xilinx Design tools on DVD (device locked)

9. USB cables

Further information about this kit can be found on the Xilinx website [30], [35].

Figure 3.8: Contents of the Zynq-7000 ZC702 Evaluation Kit [37]

(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

(9)

© Xilinx
68

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.6.2. Zynq-7000 SoC Video & Imaging Kit

The Video and Image Processing Kit builds upon the ZC702 Evaluation Kit with some
additional equipment to support image and video processing applications. The board,
which forms the central element of the kit, is identical to that in the ZC702 Evaluation Kit.

The extra items included in the Video and Imaging Kit are as listed below:

1. Video Expansion Board

2. Image Sensor (video camera) including lenses, cable and tripod

3. HDMI cable

4. HDMI-DVI adapter

Additional information about this kit can be obtained from [32].

3.6.3. Zynq-7000 ZC706 Evaluation Kit

The ZC706 kit features a larger Zynq device than the previous two kits: the Z-7045,
which is based on Kintex 7 PL fabric. This is one of the larger Zynq-7000 series devices, and
it features GTX transceivers and PCI Express.

The board itself includes an increased memory provision over the ZC702-based boards,
a PCI Express connector for use with the PCI Express facilities on the Z-7045 device, and
SMA and SFP (‘small form-factor pluggable’) connectors for use with the embedded GTX
transceivers. For more information on the ZC706 kit, please refer to [31].

3.6.4. ZedBoard

The ZedBoard is not just an evaluation kit, but a community as well. We will postpone
further discussion on this topic until Chapter 6, which is in fact an entire chapter dedicated
to the ZedBoard!

3.6.5. ZYBO

The ZYBO (diminutive of Zynq Board) is an ultra-low cost alternative to the ZedBoard
featuring the smallest Zynq device, the Z-7010, which is based on the Artix-7 PL fabric. It is
aimed at designers looking to get started developing for Zynq but who do not have a
requirement for the high density I/O or the FMC connector present in mid-level and above
boards. Figure 3.9 demonstrates how the ZYBO manages to include memory, video and
69

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
audio I/O, Ethernet, various GPIO, six Pmod connectors and more on a compact board,
roughly the size of two credit cards place side by side!

3.6.6. Third Party Boards

At the time of writing, a number of third party development board are available based on
Zynq-7000. These are highlighted below.

OZ745 Zynq SoC Video Development Kit

 Produced by OmniTek, this board features a Z-7045 Zynq device, and is targeted at
video processing applications, featuring a large number and variety of connectors for video
peripherals. More details about this kit are available from the manufacturer [12].

MicroZed Evaluation Kit

The MicroZed is a low-cost development board from Avnet which features the smallest
member of the Zynq-7000 series — the Z-7010. The design of the board allows it to operate
in one of two modes: as a standalone development board; or as an embedded system-on-
module (SOM), whereby it is paired with a compatible carrier card. More details about this
evaluation kit is available from the manufacturer [1], or alternatively on the MicroZed
community website [8].

Figure 3.9: The ZYBO Development Board
70

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
The Parallella Board

The Parallella is a credit card sized platform which is built upon the combination of a
Xilinx Zynq-7000 device (either the Z-7010 or Z-7020) and an Epiphany multi-core
coprocessor by Adapteva [14]. The platform is designed to be affordable, energy efficient
and open source. More information on this board is available from the Parallella website
[13].

NI myRIO

The NI myRIO teaching platform from National Instruments, is a portable reconfig-
urable I/O (RIO) device targeted at students who can use it to design control, robotics and
mechatronics systems [11]. It features the Zynq Z-7010 device, and is designed to work
with the labVIEW system design software. More information on the NI myRIO is available
from the manufacturer [10].

3.6.7. Accessories and Expansions

There are some standard connector types that can be used to extend the capabilities of
your development board by attaching external modules. In this way, additional function-
ality can be added — anything from simple input/output devices such as buttons and LEDs,
to fully functioned Software Defined Radio (SDR) modules.

The expansion connectors supporting these modules fall into the following categories:

• FPGA Mezzanine Connectors (FMCs) — A standardised FPGA interface for
supporting FMC cards. High data throughput is available, and this type of card is
suitable and widely used for data conversion (DAC and ADC), serial connectivity,
SDR, and video processing. Examples of currently available FMC cards can be found
on the Xilinx website [18].

• Pmods — This is a simple interface type for adding small peripheral modules (hence
the name Pmod = Peripheral module), using either 6-pin or 12-pin interfaces. The
name was standardised by, and is a trademark of, Digilent Inc., but other companies
such as Maxim Integrated also produce Pmods [7]. Typical Pmods are sensors,
actuators, data converters, and user I/O devices. There are also some communica-
tions transceivers available. Pmods can also facilitate direct wire connections.

• XADC Header — For connecting a board to interface with the on-chip XADC
component for ADC functionality. An example of this type of expansion module is
the AMS101 included within the ZC702 Evaluation Kit.
71

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
3.6.8. Working with Development Boards

When working with FPGA and Zynq development boards, the user should be mindful of
the risk of damage due to Electro-Static Discharge (ESD). This risk can be mitigated by
following recommended ESD bench practices, including the use of an ESD mat and wrist
straps, grounding of tools, etc. Further guidance for professionals and hobbyists can be
found in [3] and [5] respectively.

3.7. Support and Documentation

There are extensive resources available for the Vivado development tools on the Xilinx
website, many of which have a Zynq focus. It is also worth highlighting that ZedBoard-
specific support materials can also be obtained (more detail on these to follow in Chapter
6).

The Xilinx support site,

http://www.xilinx.com/support.html

includes User Guides as the chief source of information, Tutorials which guide the reader
through hands-on practical examples, and various other documents. There are also some
very useful training videos. The above site should be the first port of call for all information
on the design flow.

For more specific enquiries, Xilinx Answer Records and Support Forums may also be
useful. The support forums provide an opportunity to seek input or guidance from other
members of the community, and also to assist others.

http://forums.xilinx.com/

There may also be a set of reference designs accompanying your particular development
board.

Finally, it is worth noting that further training resources are available via the Xilinx
University Program (XUP) for academics and students [28]. We will return to this topic in
Chapter 7, when the opportunities for Zynq and associated tools in education and research
will be discussed.

3.8. Chapter Review

This chapter has been concerned with the practicalities of starting to work with Zynq. To
do so, you need: (i) design tools, (ii) a development board, and (iii) your imagination! We
72

http://www.xilinx.com/support.html
http://forums.xilinx.com/

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
have covered (i) and (ii) comprehensively, together with the design flow and methodologies
for creating Zynq-based systems; (iii) is of course down to you!

Another important aspect of this chapter has been to highlight the philosophy of the
Vivado design suite, and its orientation towards system-level design, IP integration, and
design reuse. These design principles are relevant to the modern day task of designing
SoCs; in particular, the need for rapid systems development.

The next two chapters will actually relate to (iii) to some extent. Having covered the
architecture and design processes for Zynq, it is of course important to consider possible
applications, and the motivations for choosing a Zynq device over other alternatives.

3.9. References

Note: All URLs last accessed June 2014.

[1] Avnet, “MicroZed Evaluation Kit”.
Available: http://www.em.avnet.com/en-us/design/drc/Pages/MicroZed-Evaluation-Kit.aspx

[2] Eclipse website.
Available: http://www.eclipse.org/

[3] ESD Association, “Fundamentals of Electrostatic Discharge, Part 3: Basic ESD Control Procedures and
Materials”, 2010.
Available: http://www.esda.org/documents/FundamentalsPart3.pdf

[4] T. Feist, “Vivado Design Suite”, Xilinx White Paper, WP416, v1.1, June 2012.
Available: http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf

[5] C. Harper, “The ESD (Electro-Static Discharge) Guide for the Hobbyist” webpage.
Available: http://www.circuitguy.com/guides/esd/

[6] MathWorks website.
Available: http://www.mathworks.com/index.html

[7] Maxim Integrated, “Pmod-Compatible Plug-In Peripheral Modules” webpage.
Available: http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-
compatible-plug-in-peripheral-modules.html

[8] MicroZed Community Website.
Available: http://www.microzed.org/

[9] K. Morris, “Kind of a Big Deal: Xilinx Rebuilds Tools - From Scratch”, Electronic Engineering Journal
(online), May 2012.
Available: http://www.eejournal.com/archives/articles/20120501-bigdeal
73

http://www.esda.org/documents/FundamentalsPart3.pdf
http://www.circuitguy.com/guides/esd/
http://www.mathworks.co.uk/index.html
http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-compatible-plug-in-peripheral-modules.html
http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-compatible-plug-in-peripheral-modules.html
http://www.eejournal.com/archives/articles/20120501-bigdeal
http://www.eclipse.org/
http://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
[10]National Instruments, “NI myRIO”, website.
Available: http://www.ni.com/myrio/

[11]National Instruments, “NI myRIO-1900 User Guide and Specifications”, August 2013.
Available: http://www.ni.com/pdf/manuals/376047a.pdf

[12]OmniTek, “OZ745 - Zynq SoC Video Development Kit” product brief.
Available: http://www.omnitek.tv/sites/default/files/OZ745.pdf

[13]Parallella, “Parallella Computer Specifications”.
Available: http://www.parallella.org/board/

[14]Parallella, “Parallella Reference Manual”, Rev 13.11.25.
Available: http://www.parallella.org/docs/parallella_manual.pdf

[15]R. Sass and A. G. Schmidt, “Partitioning” in Embedded Systems Design with Platform FPGAs, Morgan
Kaufmann, 2010, pp. 197 - 246.

[16]Synopsys, “Synopsys Design Constraints (SDC)” webpage.
Available: http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx

[17]Xilinx, Inc., “Embedded System Tools Reference Manual”, UG1043, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug1043-embedded-
system-tools.pdf

[18]Xilinx, Inc., “FPGA Mezzanine Card (FMC) Standard” webpage,
Available: http://www.xilinx.com/products/boards_kits/fmc.htm

[19]Xilinx, Inc., “Hardware In The Loop (HIL) Simulation for the Zynq-7000 All Programmable SoC”,
XAPP744, v1.0.2, November 2012.
Available:
 http://www.xilinx.com/support/documentation/application_notes/xapp744-HIL-Zynq-7000.pdf

[20]Xilinx, Inc., “Hardware/Software Cross-Trigger for Embedded Design”, video.
Available:
http://www.xilinx.com/training/zynq/hardware-software-cross-trigger-for-embedded-design.htm

[21]Xilinx, Inc., “Memory Recommendations: FPGA Memory Recommendations Using the Vivado Design
Suite” webpage.
Available: http://www.xilinx.com/design-tools/vivado/memory.htm

[22]Xilinx, Inc., “Standalone (v.4.0)”, UG647, April 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/oslib_rm.pdf

[23]Xilinx, Inc., “Vivado Design Suite Evaluation and WebPACK” webpage.
Available: http://www.xilinx.com/products/design_tools/vivado/vivado-webpack.htm

[24]Xilinx, Inc., “ISE to Vivado Design Suite Migration Guide”, UG911, v2014.1, April 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug911-vivado-
migration.pdf
74

http://www.xilinx.com/products/design_tools/vivado/vivado-webpack.htm
http://www.xilinx.com/design-tools/vivado/memory.htm
http://www.xilinx.com/products/boards_kits/fmc.htm
http://www.synopsys.com/Community/Interoperability/Pages/TapinSDC.aspx
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug1043-embedded-system-tools.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug1043-embedded-system-tools.pdf
http://www.omnitek.tv/sites/default/files/OZ745.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp744-HIL-Zynq-7000.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug911-vivado-migration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug911-vivado-migration.pdf
http://www.ni.com/myrio/

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
[25]Xilinx, Inc., “Vivado Design Suite Tutorial: Using Constraints”, UG945, v2014.1, April 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug945-vivado-
using-constraints-tutorial.pdf

[26]Xilinx, Inc., “Vivado Design Suite User Guide: Programming and Debugging”, UG908, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug908-vivado-
programming-debugging.pdf

[27]Xilinx, Inc., “Vivado Design Suite User Guide: Release Notes, Installation and Licensing”, UG973, v2014.1,
May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug973-vivado-
release-notes-install-license.pdf

[28]Xilinx University Program webpage.
Available: http://www.xilinx.com/university/index.htm

[29]Xilinx, Inc., “Xilinx Software Development Kit (SDK)” product webpage.
Available: http://www.xilinx.com/tools/sdk.htm

[30]Xilinx, Inc., “Xilinx Zynq-7000 SoC ZC702 Evaluation Kit” webpage,
Available: http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

[31]Xilinx, Inc., “Xilinx Zynq-7000 SoC ZC706 Evaluation Kit” webpage,
Available: http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC706-G.htm

[32]Xilinx, Inc., “Xilinx Zynq-7000 SoC Video and Imaging Kit” webpage,
Available: http://www.xilinx.com/products/boards-and-kits/DK-Z7-VIDEO-G.htm

[33]Xilinx, Inc., “Zynq-7000 All Programmable SoC Software Developers Guide”, UG821, v9.0, June 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

[34]Xilinx, Inc., “Zynq-7000 All Programmable SoC Technical Reference Manual”, UG585, v1.6, June 2013.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[35]Xilinx, Inc., “Zynq-7000 EPP ZC702 Evaluation Kit”, Product Brief.
Available: http://www.xilinx.com/publications/prod_mktg/zynq-7000-kit-product-brief.pdf

[36]Xilinx, Inc., “Zynq-7000 Platform Software Development using the ARM DS-5 Toolchain”, XAPP1185,
v2.0, May 2014.
Available: http://www.xilinx.com/support/documentation/application_notes/xapp1185-Zynq-software-
development-with-DS-5.pdf

[37]Xilinx, Inc., Zynq ZC702 evaluation kit (image reference).
Available: http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G-image.htm
75

http://www.xilinx.com/publications/prod_mktg/zynq-7000-kit-product-brief.pdf
http://www.xilinx.com/university/index.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC706-G.htm
http://www.xilinx.com/products/boards-and-kits/DK-Z7-VIDEO-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G-image.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug973-vivado-release-notes-install-license.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1185-Zynq-software-development-with-DS-5.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1185-Zynq-software-development-with-DS-5.pdf
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug945-vivado-using-constraints-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug945-vivado-using-constraints-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

CHAPTER 3: Designing with Zynq (“How do I work with it?”)
76

4

Device Comparisons

(“Why do I need Zynq?”)

n the same way that processors or FPGAs can be applied to a multitude of different
problems, the same is true of Zynq. There is not one single application for Zynq, but many
of them; potential applications include wired and wireless communications, automotive,
image and video processing, high performance computing, and numerous others. We will
discuss some of these possibilities in more detail later, in Chapter 5.

Before doing so, it is beneficial to consider the characteristics of Zynq as compared to
other device alternatives, so that its suitability for these candidate applications can be
clearly understood. Amongst the factors to be considered are parallel processing resources,
processing capability, bandwidth, latency, and flexibility. As well as these architectural
aspects, there are also important practical and commercial considerations to take into
account, including Bill of Materials (BOM) costs, physical size, and power consumption.

Over the next few sections, processors and FPGAs will be compared and contrasted with
Zynq. Three comparisons will be made: Zynq against an FPGA; Zynq against a processor;
and Zynq against the combination of a processor and FPGA together. The last option
represents a direct, discrete-component equivalent to Zynq. In each case, it will be
observed that Zynq offers a number of possible advantages.

Towards the end of the chapter, we will introduce the specific support within the Vivado
suite for rapidly porting functionality from software into hardware implementation. It will

I

77

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
be seen that this ‘high-level synthesis’ approach can help to quickly achieve a favourable
partitioning between hardware and software elements, thus exploiting the Zynq archi-
tecture.

4.1. Device Selection Criteria

Before proceeding to compare Zynq with other device alternatives, it is useful to briefly
review the parameters against which these options will be assessed. These can be grouped
into five themed categories as given in Table 4.1.

Table 4.1: Factors involved in selecting a device (or devices)

Categories Factors

Device capabilities Processor performance
Logic performance
Memory performance
Support for high-speed arithmetic
Support for I/O and communications
Security features and support for secure booting
Bandwidth between processor and logic
Latency between processor and logic

Commercial factors Bill of materials
Developments costs (see below)
Integration (and implied costs)
Longevity of device availability and technical support
Quality and reliability
Ease (cost) of providing field upgrades

Design and development Time to market
Fast, convenient and reliable design flows
Integrated verification
Integration with other development tools
Support for team-based design flows
Support for design reuse
Support for industry standard design formats
Support for desired design entry methods
Documentation and technical support
78

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
The technical and commercial requirements of any particular design task will dictate the
relative priorities of these factors. In other words, the most important criteria for Project X
in Company A (who might be designing a ground-based military radar system) may not
match those of Project Y in Company B (who are developing a low cost embedded sensor
node for managing green buildings). We will discuss applications and related considera-
tions further in Chapter 5.

Notwithstanding all of the above, one factor that is usually near the top of the list, along
with technical performance criteria, is cost. That is: (i) the BOM costs; and (ii) the devel-
opment costs involved in developing products based on the target device(s). As will be
discussed during the remainder of this chapter, the capabilities of Zynq are such that it can
potentially replace two devices, which constitutes a cost saving. There are also significant
improvements in productivity possible due to the new Vivado Design Suite and its
associated flows, leading to a saving in development time and cost compared to previous
methods.

Physical device
characteristics

Physical size
Power consumption
Ease of integration and resulting PCB complexity
Connectivity
Ruggedness
Radiation sensitivity
Supported temperature range

Flexibility Scalability (larger and smaller devices available and can
be adopted with little or no rework)
Portability (designs in standard forms that can be
ported from/to other platforms)
Re-programmability (ability to change functionality in
the field or even dynamically at run time)
Ease of partitioning (ability to partition functionality
between hardware and software)
Expansibility (ease of integrating new functionality)

Table 4.1: Factors involved in selecting a device (or devices)

Categories Factors
79

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
4.2. Comparison A: Zynq versus FPGA

An important point to reiterate is that the programmable logic of Zynq is equivalent to
that of an FPGA. The PL of the smaller Zynq devices corresponds to the fabric of Artix-7
FPGAs, while the larger ones are equivalent to Kintex-7. Our discussions over the next few
pages will focus on the differing possibilities for implementing embedded processors on
these devices.

In embedded applications, it is usual to require one or more processors to orchestrate the
system, support software, and co-ordinate exchanges with peripheral components. FPGAs
have been commonly used with soft processors for more than a decade, and as these
devices are deployed for ever more sophisticated applications, the need for processor-based
systems grows.

As mentioned in Chapter 2, the Zynq architecture includes a hard processor, but it is also
possible to build soft processors using programmable logic. Current standard FPGAs are
composed of programmable logic without a hard processor facility, and therefore it is
reasonable to explore the option of soft processors in greater detail. This will help us to
understand why Zynq may be considered ‘better’ for certain applications than an all-FPGA
solution including a soft processor.

In essence, the question here is, “What can Zynq do for me that an FPGA with a soft
processor can’t?”.

In order to make appropriate comparisons and hence answer this question, we must first
define the standard FPGA soft processors that are available. There is one primary type, the
MicroBlaze, which is a 32-bit soft processor with extensive support within the Xilinx
toolflow, and there are also some further options.

4.2.1. MicroBlaze Processor

MicroBlaze is the principal soft processor type and is supported within both the Xilinx
ISE and Vivado design flows, including the most recent releases. Multiple MicroBlaze
instances can be deployed on a single device, if desired. There is no implied licensing cost
of using MicroBlaze processors in system designs, commercially or otherwise.

Configuration

One of the benefits of using a soft-processor is that its configuration is flexible. The
MicroBlaze has a number of different architectural options which can be included or
excluded from the processor implementation depending on the requirements of the target
application. For example, the FPU can be excluded if the system does not call for floating
80

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
point computation, thus reducing the footprint of the processor implementation on the
FPGA (i.e. the amount of resources it requires). In a more general sense, the configuration
of the MicroBlaze can be customised to optimise for operating frequency, performance, or
area; alternatively, it can be specified such that a suitable balance between these three
metrics is achieved. This is done very easily in Vivado using a configuration wizard.

MicroBlaze resource utilisation varies with configuration, starting at approximately 900
LUTs, 700 FFs, and 2 Block RAMs for the ‘minimum area’ option, and rising to about 3800
LUTs, 3200 FFs, 6 DSP48E1s and 21 Block RAMs for the ‘maximum performance’ configu-
ration. Sample floorplans of these, targeting the Zynq XC7Z020, are shown in Figure 4.1.

Figure 4.1: Floorplans of ‘minimum area’ (top) and ‘maximum performance’ (bottom)
MicroBlaze soft processor implementations

PS

PS

Minimum Area MicroBlaze

Maximum Performance MicroBlaze

footprint of MicroBlaze processor
in logic fabric

footprint of MicroBlaze processor
in logic fabric

PL

PL
81

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
As mentioned earlier, the number of implemented MicroBlaze instances is also config-
urable, and this adds another dimension of flexibility. For example, the closest MicroBlaze
equivalent to the (dual-core) ARM Cortex-A9 processor would comprise two MicroBlaze
instances.

Processing Performance

The maximum frequency attainable by MicroBlaze is dependent on its configuration,
which is customisable, and also other factors such as placement and routing on the PL. To
provide a rough indication, a typical MicroBlaze configuration might achieve about 70% of
the maximum frequency of the PL, which equates to, at most, two or three hundred MHz
— this compares to the ARM processor’s maximum operating frequency of 800MHz to
1GHz.

Processor performance is normally evaluated using a benchmark. In order to quantify
the performances of the ARM Cortex-A9 and MicroBlaze, and thus compare them, two
widely used benchmarks can be used:

• DMIPs (Dhrystone Millions of Instructions Per second) [19] — The quantity
DMIPs expresses the number of operations achieved per second undertaken by the
processor when running the Dhrystone standard test application. Dhrystone is a
synthetic application (i.e. it is not representative of real work), specifically designed
to exercise the processor with a representative set of processor operations.

• CoreMark score [6] — CoreMark establishes a simple numerical ‘score’ for processor
performance, which can be directly compared with the scores of other processors.
The CoreMark application serves the same purpose as Dhrystone, but its content is
tailored to execute a set of operations truer to typical embedded processor usage.

DMIPs and CoreMark are measured (as opposed to calculated) metrics for quantifying
processing capability. Although they are both derived from running specific, freely
available test applications on the processor being evaluated, there are some fundamental
differences between them. For a range of reasons, CoreMark is generally considered to be a
more robust and realistic benchmark than the older Dhrystone method, and indeed ARM
recommends the use of CoreMark [1], [5].

According to Xilinx literature [8], the three MicroBlaze configurations listed in Table 4.2
can achieve no more than 260DMIPs on Zynq in speed grade -3, whereas the dual-core
ARM is projected to reach 5000DMIPs (2500DMIPs per core), assuming a PS clock
frequency of 1GHz [17]. This indicates that the ARM processor offers approximately a 20
times greater processing performance than a single MicroBlaze core. DMIPs figures should
82

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
however be treated with a little caution, and these figures considered ‘best case’ results.

CoreMark figures can also be obtained to compare the Zynq ARM processor with
MicroBlaze. At the time of writing, however, the latest available MicroBlaze score arises
from a Virtex-5 FPGA implementation, rather than Zynq or a 7 series FPGA, and for a
single MicroBlaze core only [6]. These are given in Table 4.3 for operating frequencies as
stated (figures of CoreMark/MHz are also available). The figures show a large difference
between the capability of the ARM Cortex-A9 processor on Zynq, and that of MicroBlaze.

Table 4.2: Maximum MicroBlaze and ARM Cortex-A9 performance on Zynq (DMIPs)

Processor Type Configuration
Processing

Performance
(DMIPs)a

a. All figures are based on speed grade -3 (the fastest grade) and should be considered best
case values.

MicroBlaze

Area optimised (3-stage pipeline) 196b

b. Statistic from [8].

Performance optimised with branch optimisations
(5-stage pipeline)

228b

Performance optimised without branch
optimisations (5-stage pipeline)

259b

ARM Cortex-A9 1GHz; both cores combined; 2500 per core 5000c

c. Statistic from [17].

Table 4.3: Maximum MicroBlaze and ARM Cortex-A9 performance on Zynq (CoreMark)

Processor Type Configuration
Processing

Performance
(CoreMark)a

a. Statistics from [6].

MicroBlaze 125MHz; 5-stage pipeline (Virtex-5) 238

ARM Cortex-A9 1GHz; both cores combined 5927

ARM Cortex-A9 800MHzb; both cores combined

b. This figure does not relate to the fastest available speed grade.

4737
83

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
Other Features and Factors

 There are several important differences between the MicroBlaze and ARM Cortex-A9
processors. Among them: the MicroBlaze is a single core processor compared to ARM’s
dual-core; the ARM has a richer instruction set than the MicroBlaze; the MicroBlaze FPU
implements only single precision floating point, whereas the ARM also supports double
precision; and the cache configuration of the MicroBlaze provides a single level cache,
whereas the ARM has a two-level cache with greater capacity. These architectural and
functional differences help to account for the difference in performance between the two
processor types.

Taking all of these factors into account, it is obvious that the ARM Cortex-A9 processor
is better equipped than the MicroBlaze. Even so, MicroBlaze is still a very suitable choice
for many applications. In the specific context of Zynq, a MicroBlaze can act as a useful
‘subordinate’ processor to the ARM. For example, a MicroBlaze could be used to control a
subset of the PL system functionality. Given its status as a soft resource, it is also true that
multiple MicroBlaze processors can be implemented in the PL if desired, and if the
available logic permits. This, together with their inherent configurability, renders them a
very flexible processing resource.

To make a simple and direct comparison between Zynq’s ARM processor and a Micro-
Blaze processor implemented on an FPGA, it is clear that the ARM has a significant
advantage in terms of the processing facilities and performance available. Therefore, it can
be seen that Zynq brings a clear advantage to the implementation of processor-intensive
applications: it offers a level of performance unattainable by a standard FPGA.

4.2.2. MicroBlaze MicroController System

In 2012, a lightweight version of the MicroBlaze was introduced: the MicroBlaze Micro
Controller System (MCS) [7]. It was designed for controller applications, and has a fixed
architecture including an area-optimised MicroBlaze processor, combined with data and
program memory and a standard set of peripherals. Although the basic architecture is
predefined, there are some lower-level configuration options which affect the ultimate
footprint of the MCS implementation on an FPGA. A rough cost is 550 - 700 LUTs and 300
- 600 FFs, or more if debug features are included [7]. Timing performance varies depending
on the target device and the other elements of the implemented system.

As is the case with the MicroBlaze Processor, the MCS is compatible with the Zynq PL.
An MCS instance may form part of a Zynq-based SoC design, typically implementing low-
level control functionality under the supervision of applications running on the more
capable ARM.
84

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
4.2.3. PicoBlaze

The PicoBlaze is a microcontroller rather than a processor (i.e. it comprises other facil-
ities besides the processing element, and supports a limited but useful set of operations).
However, it is worth including PicoBlaze here for completeness, and to establish how it
differs from the similarly named MicroBlaze. This 8-bit soft microcontroller IP has a very
small footprint (a few tens of slices plus program memory) and is capable of implementing
finite state machines and other simple control functionality [10]. The designs for PicoBlaze
can be obtained as a download directly from the Xilinx website, and the fileset includes
VHDL and Verilog for the core PicoBlaze controller, together with optional functionality
such as UART and SPI interfacing.

Given that it is an 8-bit controller, PicoBlaze functionality is limited, and incomparable
to that of a Zynq ARM processor. However, a PicoBlaze instance can run at over 200MHz
in Kintex-7 logic fabric, in most cases as fast as the logic it may be controlling [4].
Therefore, the PicoBlaze can be viewed as a valuable resource of a different kind. It is
possible that this compact controller may play a useful role within a Zynq or MicroBlaze
based embedded system, controlling lower-level functionality.

4.2.4. ARM Cortex-M1

ARM offers a ‘soft-core’ microcontroller, the ARM Cortex-M1, which is optimised for
FPGA implementation. Therefore in Zynq, this core would be implemented in the PL
section of the device to complement the processing undertaken by the ARM Cortex-A9.
Like the MicroBlaze, the configuration of the Cortex-M1 can be specified according to user
requirements, meaning that the logic resources required to implement the core may be
minimised.

4.2.5. Other Processor Types

There are some other FPGA embedded processors which it is useful to be aware of, and
these can be categorised as soft and hard processors. We have already discussed in detail the
Zynq ARM processor (a hard processor) and the MicroBlaze (a soft processor), and here
we briefly review other processors falling into these categories.

Soft Processors

MicroBlaze is the most prevalent soft processor in Xilinx FPGA and SoC designs, due to
both the integrated and extensive support provided for it, and its excellent implementation
and performance characteristics. However, it is not the only soft processor available, and
third party processor IP is available as an alternative, or to cater for niche applications.
85

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
Example third party processors include LEON4 and OpenRISC. As an example, product
information for LEON4 states its performance as 1.7DMIPs/MHz or 2.1 CoreMark/MHz,
and that it can reach up to 125MHz on a Virtex-5 device, while the area requirement is
given as 4,000 LUTs [3]. OpenRISC is a collaborative open source project hosted by
OpenCores; performance and area statistics are not readily available. In both cases, the
processor cores are not exclusively for use on FPGAs, but can also be targeted at ASIC
implementation. This is also true of the OpenSparc project. OpenSparc is an open-source,
64-bit Reduced Instriction Set Computer (RISC) processor developed by Sun
MicroSystems, one particular version of which specifically targets FPGA implementation.
There have been two major releases of OpenSparc to date: T1 (in 2006), and T2 (in 2008).
The 64-bit architecture clearly differentiates OpenSparc from other soft processors, which
are generally 32-bits, and although of interest to the research community, it has not been
widely adopted commercially. This is possibly a reflection that the more mature 32-bit
processors satisfy the majority of current FPGA-based embedded processing requirements.

Hard Processors

The single hard processor to be discussed is the IBM PowerPC®, which was included as a
hard processor in the Virtex-II Pro (released in the 2002 [11]) and subsequently in a subset
of Virtex-4 and Virtex-5 FPGAs [12], [13]. Each of these FPGAs includes either one or two
PowerPC (PPC) units.

Similarly to the ARM processor in the Zynq, the PowerPC hard processor offers a
considerable performance advantage compared to a MicroBlaze implemented in the logic
fabric of the same device. Taking the example of the most advanced PowerPC-equipped
FPGA available, the PowerPCs in the Virtex-5 can each achieve up to 1,100 DMIPs (i.e.
2,200 DMIPs in total using one of the larger, two-unit devices), whereas MicroBlaze perfor-
mance is around 240 DMIPs [14], [15]. Comparing these figures with those in Table 4.2 for
the Zynq, it is evident that the Zynq ARM processor possesses more than double the
processing capability of the PowerPC on the Virtex-5. It is not possible to make a direct
comparison using the CoreMark benchmark at the time of writing, due to the lack of
published performance figures.

The older, PowerPC-based embedded solutions established a clear motivation for
devices combining hard processors alongside FPGA general purpose logic, and therefore
can be considered near-direct predecessors of the Zynq All-Programmable SoC. These
belong to older devices which, although still in production at the time of writing, are
unsupported by the latest design tools and processes. They are therefore not recommended
for new designs; Zynq is preferred. Zynq represents a new generation technology and offers
86

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
significant improvements in hard processor performance, power consumption, program-
mable logic fabric, device integration, and tool support.

4.2.6. Summary Comments

In this section we have compared the Zynq processor against the alternative of an FPGA
upon which a soft core processor is implemented. It has been noted that there are various
types of soft processing resources available, including cores provided by Xilinx and by third
parties. It is also possible, albeit with significant design effort, to design your own soft
processor in-house.

By far the most prominent type of soft processor is Xilinx’s MicroBlaze, which has
customisable functionality and can be configured to optimise its processing performance,
operating frequency, or area (or a combination thereof). MicroBlaze is integrated into
Vivado and extensive support is available. It has been noted that MicroBlaze has a number
of useful attributes, but that it cannot provide processing performance close to that of
Zynq’s ARM Cortex-A9 processor. MicroBlaze is however a very flexible and useful
resource in its own right, and these two different processor types should be viewed as
complementary. Figure 4.2 provides a brief graphical summary of the architectural
comparison made in this section, where a MicroBlaze has been utilised as a representative
soft processor implemented on an FPGA.

Other FPGA based embedded processor options have also been surveyed, and it has
been shown that the processing facilities of Zynq are markedly enhanced compared to

FPGA PS

PL

FPGA with soft processor

(e.g. MicroBlaze)

Zynq Architecture

(optional MicroBlaze)

MicroBlaze

MicroBlaze

Figure 4.2: Comparison between an FPGA with soft processor (MicroBlaze), and a Zynq device
with hard processor (ARM) and optional soft processor (MicroBlaze).
87

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
previous FPGA hard processor technologies, namely those based on the PowerPC. Figure
4.3 provides a graphical comparison of the considered processor types, based on published
performance figures (given in term of DMIPs).

Notably, the left and central groups represent hard processors, while the group on the
right corresponds to a selection of soft processors. There is clearly a significant perfor-
mance gap between the two. The Zynq-based ARM processor (leftmost group) operates at
up to 866MHz (in the Artix-based devices) or up to 1GHz (in the Kintex-based devices),
leading to two different levels of performance. These both provide a marked improvement
compared to the PowerPC hard processors most recently incorporated in Virtex-5 FPGAs,
which Zynq effectively supersedes.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

M
a
x
im
u
m

P
e
rf
o
rm
a
n
c
e

(D
M
IP
s
)

AR
M

Co
rte
x-A

9
@
1G

Hz

AR
M

Co
rte
x-A

9
@
86
6M

Hz

2
x
Po
we
rP
C

(V
5)

 P
PC

 (
V5
)

Mi
cro

Bl
az
e:

Zy
nq
 /
 7
-se

rie
s

Mi
cro

Bl
az
e:

V5

Ot
he
r
so
ft
co
re
s
(re
pr
es
en
tat
ive

)
Zynq-7000 SoC
(hard processor)

V5 PowerPC
(hard processor)

Soft processors

Figure 4.3: Performance comparison of hard and soft processor options
(indicative only - extrapolated and based on best case)
88

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
In the Zynq, the high performance ARM Cortex-A9 hard processors can, if desired, be
augmented with MicroBlaze or other soft processors to effectively form two layers of
processing. This is effectively the architecture depicted on the right hand side of Figure 4.2.

4.3. Comparison B: Zynq versus Standard Processor

Those considering a standard processor for their next application may wish to evaluate
the Zynq as an alternative. In this case, the question is slightly different: “What might be
gained by combining programmable logic with my processor?”.

To a large extent, the answer depends on the application area, and the type of processing
that the processor is required to perform. Having chosen a processor, for instance a
General Purpose Processor (GPP) or a Digital Signal Processor (DSP), it must be assumed
that there is a need to support software routines, or an operating system with applications.
It might be that the software implements computationally intensive operations which result
in a bottleneck, and would benefit from hardware acceleration using the additional PL
available in the Zynq. The benefit of PL is that it can be fully tailored and optimised for a
particular task, whereas processors are more general purpose.

Programmable logic offers an ideal resource for implementing algorithms inherently
parallel in nature; for example in signal and image processing, where mathematical opera-
tions are performed on a large number of samples or pixels simultaneously. Although there
are specific resources available in some processors to cater for this type of application (such
as the NEON engine in the ARM Cortex-A9), their performance cannot necessarily match
that of optimised, task-specific hardware processing blocks implemented in FPGA-type
programmable logic.

A wide variety of processors are available, and as mentioned in Section 4.2.1, their
performances can be evaluated and compare using a standard benchmark. It is particularly
convenient that the website of the Embedded Microprocessor Benchmark Consortium
(EEMBC) provides a database of submitted CoreMark scores [6]. Through this, it may be
confirmed that Zynq compares favourably with other implementations of the ARM
Cortex-A9 architecture.

4.3.1. Processor Operation

The resources of a processor are fixed, and usually limited to one, two or four processing
cores (more in some cases), which are required to operate at a specific clock frequency. The
cost of implementing a desired software implementation is measured in terms of clock
(execution) cycles, which will of course require some specific amount of time to execute at
89

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
the desired clock frequency; the more complex the required processing, the longer the
execution time will be. The efficiency of the implemented algorithm is also important, such
that it does not include redundant operations.

To give an example, let’s assume that we have a single-core processor operating at 1GHz.
If a particular routine requires 1,825 execution cycles, then it will take 1.825 s to complete,
assuming that the processor is dedicated to this one particular routine. In the case that
subsequent modifications are made, adding a further 500 cycles of computation, then the
duration of the routine will extend to 2.325 s. These two simple examples are illustrated in
Figure 4.4. Augmenting the functionality of a routine via the addition of operations
naturally increases the execution time, and this may be acceptable (within reason) for non
time critical applications.

Non Real-Time Operation

If we consider the behaviour of a generic processor, it has a finite number of timeslots
(clock cycles) that are occupied — or not — by particular operations scheduled onto them.
Some of these operations may take a single cycle; others several cycles. More specifically,
the occupation of processor cycles can be represented in terms of program functions or
tasks. It might be that the processor supports a number of different tasks that repeat
regularly, or occur on an ad hoc basis, and which are scheduled onto the processor
according to their relative priorities. This model of operation is depicted in Figure 4.5.
Notice that, as the processor is a serial resource, it accommodates only one task during any
one timeslot; this reflects the serial nature of processor operation. Of course, it is also true
that processors are increasingly ‘multi-core’, meaning that they have two or four processing
cores (for instance), each of which can process tasks in serial. Here we restrict the example
to a single core for clarity.

μ

μ

time

routine #1

routine #2

1.825 s 2.325 s

Figure 4.4: Visualisation of processing time for two variations of a software routine
90

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
As the processor becomes ‘busy’, the level of occupation of timeslots increases, and
therefore its performance in terms of executing software routines may become slower. This
is analogous to driving on a trunk road: when it is congested with traffic, the travelling time
is likely to be longer. It is also true that the timeliness of completing particular tasks is
variable as a result of the sharing of the processor resources between different tasks. In
certain applications, this lack of determinism and ability to guarantee timing cannot be
tolerated, and real-time processing is required.

Real-Time Operation

When aiming for real-time operation, it should be considered that there is a ‘budget’ of
execution cycles available, within which the desired software applications or algorithms
must be executed. For example, a real-time video processing application demands a
processing resource that can keep pace with data arriving at the desired frame rate and
resolution; otherwise, the processor will still be busy with the previous frame(s) as new
data arrives. This scenario is depicted in Figure 4.6 — notice that there are effectively

Task A

Task B

Task C

Task D

Processor

Activity

P
ri
o
ri
ty

timeexecution cycle

Figure 4.5: Processor operation: execution cycles
91

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
processing deadlines by which all processing relating to each individual frame must be
completed.

Real-time systems can be classified as soft real-time or hard real-time. If soft real-time,
the system performance is likely to degrade, usually temporarily, as a result of a missed
processing deadline; if hard real-time, the system may fail completely.

In the above example of a video processing application, the consequence of skipping a
deadline and missing a frame is likely to cause a brief loss of quality, however the system
will soon recover if the following processing deadlines are met. On the other hand, if the
deadlines relate to an industrial safety system, then this would be considered a hard real-
time system as, in the worst case, missing a processing deadline may cause a catastrophic
failure of the system.

4.3.2. Execution Profiling

When considering the activity of the processor, it is often useful to consider its activity
with respect to the various tasks it must support. For instance, if the processor spends 80%
of its execution cycles on a particular task, this should be investigated to establish whether
any parallelism can be identified. If so, then partitioning this functionality into hardware
can result in a significant speed-up overall.

For example, consider that we have a software routine which performs FIR filtering of
some data, implemented in software on a processor. It may be observed that the processor
spends a large proportion of its execution cycles performing the filter arithmetic to
generate the results. As the computation of FIR filtering is highly parallel (i.e. multiple
operations may take place simultaneously), this an ideal candidate for hardware acceler-
ation. The NEON unit of the ARM Cortex-A9 processor is a suitable resource due to its

operations

time
Figure 4.6: Real-time processing

processing deadlines
(new video frames) deadline missed!
92

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
SIMD capabilities, although it has a limited number of processing ‘lanes’, as reviewed in
Chapter 2, which may limit its performance. Better still, FPGA logic fabric permits a high-
speed, fully parallel version of the filter to be implemented. This ‘off-loading’ of operations
from the processor into hardware has the potential to greatly reduce the overall execution
time, as illustrated in Figure 4.7. It also frees up the processor, such that it can undertake
other operations using the processing cycles vacated by the accelerated function.

One aspect to be aware of when partitioning functionality from software into hardware
is the implied overhead of communicating between the two parts of the system. The time
taken to transfer data and instructions between software and hardware constitutes an
additional latency that offsets the processing speed-up; if the overhead is too large, the
benefit of hardware acceleration is lost. As will be explained in the next section, an impli-
cation of using Zynq, as compared to a discrete processor and FPGA, is that the communi-
cation overhead is low; this is due to the tight coupling between the PS and PL components
of the device.

FIR Filtering (computationally intensive routine)
processing

cycles

processing

cycles

offload computation

to co-processor hardware acceleration

reduced processor operations

(mostly communications etc.)

cP

Figure 4.7: Processor activity before (top) and after (bottom) hardware acceleration of FIR filtering
93

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
4.3.3. Summary Comments

In this section, we have reviewed the general operating principles of processors, and
considered the need for real-time processing in some applications. It has also been demon-
strated that, while certain intensive routines can be implemented on a processor, they may
represent a significant burden on its resources, potentially causing the overall performance
of the processor to suffer.

The possibility of off-loading such routines onto a co-processor was put forward as a
solution to this problem, and can be particularly effective when the nature of the off-loaded
computation is parallel, and hence well-suited to the architecture of acceleration engines
like the NEON processor in the ARM. However, PL is the ultimate accelerator because it
can support arbitrary levels of parallelism, and therefore flexibly supports a wide range of
algorithms, and even multiple co-processors simultaneously.

Figure 4.8 shows a simple, conceptual diagram comparing a processor in isolation, and a
Zynq device. Adding even a modest amount of programmable logic (equivalent to one of
the smaller Zynq devices) enables significant hardware acceleration, and therefore can be a
compelling alternative to a processor alone, freeing up the processor’s resources to support
other aspects of system performance.

4.4. Comparison C: Zynq versus a Discrete FPGA-Processor Combination

The last architecture to compare with Zynq is that of a processor-FPGA combination, i.e.
where these two elements exist as physically separate components. The motivation for this
type of system is usually that the system needs to support both computationally intensive

Processor

PL

PS
cP1

cP2

Zynq

Figure 4.8: Comparison between a processor alone, and a small Zynq device
94

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
data-flow type processing (ideally suited to the FPGA), and sophisticated software
algorithms or applications (ideally suited to a dedicated processor). It may be that the
software element of the system extends beyond the scope of MicroBlaze implementation,
meaning that both an FPGA and a processor are deemed to be required.

The Zynq gives the option of a single-chip replacement for this configuration, and the
two possibilities are depicted in Figure 4.9.

The Zynq solution is advantageous on a number of fronts. Firstly, with reference to one
of the most important parameters identified in Section 4.1, it should be recognised that
opting for a single device has the potential to reduce the BOM. The board-level system
hardware architecture is simplified due to the reduced number of components, which
further contributes to cost savings, and potentially also improves reliability.

Processor FPGA

PS

PL

Discrete Component Architecture

Zynq Architecture

external links

Figure 4.9: Comparison between discrete-component and Zynq-based
combinations of processing system and programmable logic
95

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
The use of a Zynq device also enables the physical size of the system to be reduced, while
power consumption may be significantly lower, in terms of both (i) device operation and
(ii) inter-chip communication. The external links of a discrete component system expend
more power than the comparatively more local connections between the PS and PL in the
Zynq; this contributes to the overall power saving associated with the Zynq solution. Other
power savings are achieved due to the smaller physical size of the Zynq device, its 28nm
device architecture, and its tight memory integration.

 From a design perspective, Zynq also provides the potential for productivity gains,
leading to accelerated development times. This can be attributed to the integrated design
flow and suite of software development tools for Zynq, which is based on a system-level
design philosophy, leveraging design reuse and rapid, high-level synthesis of C based
algorithms. On the other hand, the alternative for a discrete component system might be
two very separate design flows, tool sets, and processes. It is also significant that the Zynq
design flow features support for a set of standard AXI interfaces between the PL and PS,
which removes much of the effort of designing and implementing appropriate interfaces.
The extensive availability of third party AXI-compatible IP is a further advantage.

Finally, the overhead of communicating between the processor and FPGA over external
connections is avoided; as mentioned previously, this may be the cause of bandwidth
constraints and increased latency in the two-chip model. The internal connections in the
Zynq device are inherently more secure than external links and, in fact, additional security
features are integrated to facilitate a secure boot sequence, and to defeat tampering [16],
[18].

Extensive further discussion about the benefits of Zynq as compared to a two element,
discrete solution is available in [16].

4.5. Exploiting the Zynq Architecture and Design Flow

One particularly powerful aspect of the Vivado design flow is its tool for high-level
synthesis, Vivado HLS, which allows hardware (destined for implementation on the PL) to
be generated from a C-based software description.

HLS will be discussed in detail in Chapters 14 and 15, but for the purposes of the current
discussion, it is useful to briefly summarise the motivation for its use. The HLS design
method permits rapid creation of designs, as a result of describing functionality at a higher
level of abstraction than the traditional RTL-level (as used by HDL and related design entry
methods). Using HLS, the designer can influence the synthesis of C code to hardware by
applying specific directives and constraints that relate to aspects of the generated hardware.
96

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
The use of HLS is particularly compelling in the context of Zynq system development,
because its architecture comprises both PS and PL. It means that functional parts of the
system can very easily be ported from software destined for execution on the ARM, to
hardware for implementation on the PL, simply by retargeting C code with only minor
modifications.

Changing the realisation of system elements represents a different hardware/software
partitioning, which may achieve performance or implementation benefits. For example, in
Figure 4.10, the functional element F4 has been moved from software to hardware imple-
mentation (potentially via the use of HLS), and the element F1 has been shifted from a
hardware implementation to a software routine. The adapted system architecture may be
found to facilitate increased data throughput, for example.

When developing complex systems, the implication that software/hardware partitioning
can be very readily accomplished with the support of HLS methods is of significant benefit.
As required, the design team can investigate different partitionings before committing to a
final system architecture, with a reduced time overhead in doing so.

PL

PS
F1

F2

F
3

F
4

F
6

F
4

PL

PS
F1

F2

F
3

F
4

F
6

F
4

F
4

HW/SW partitioning #1 HW/SW partitioning #2
(F

4
 moved to PL, F

1
 moved to PS)

F1

Figure 4.10: Two examples of hardware/software partitioning based on Zynq
97

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
4.6. Chapter Review

This chapter began by reviewing factors influencing the choice of a target device (or
devices), from the perspective of a system developer. A number of such factors were
identified, including: the architecture, configuration and performance of the device;
commercial considerations; the supporting design flow and development tools; physical
characteristics; and flexibility. With these in mind, the used of Zynq has been motivated
through comparisons with other system implementation options, namely using an FPGA
or processor in isolation, and an FPGA-processor combination as discrete components.

A processing resource is a necessity in most embedded applications, and the support for
processors in FPGAs has been reviewed, covering both soft and hard processors. The
performance of current and historical FPGA-based embedded processors has been
compared with Zynq’s ARM processor, and it has been shown that the ARM outperforms
all available alternatives.

The general operation of processors was reviewed. It was noted that, if parallelism within
the software can be identified, there is great scope and motivation to retarget these
functions to hardware as significant acceleration can be achieved in this way. Such
hardware/software partitioning can result in a system implementation combining a
discrete processor and discrete FPGA but, as has been discussed, this architecture has its
own difficulties, many of which arise from the interfacing required between the two
physical chips.

Given all of these factors, the fact that Zynq provides both high performance processing
and FPGA-type programmable logic fabric in an integrated device is of great interest. This
represents the best of both worlds, and gives the designer the flexibility to partition the
system between software and hardware elements according to requirements. One of the
facilities which helps with this process is Vivado HLS, a tool which converts C or C++
algorithms into hardware descriptions suitable for implementation in Zynq’s PL. This
means, for example, that computationally intensive sections of software can be quickly
retargeted for hardware acceleration. HLS will be the subject of a ‘spotlight’ chapter later in
the book (Chapter 14), followed by a specific review of the Vivado HLS development tool
(Chapter 15).

Next, we will consider some of the applications for which the Zynq is particularly well-
suited, based on the observations made in this chapter. Application areas include wireless
communications and software defined radio, smart networks, automotive and industrial,
image processing, robotics, and many others.
98

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
4.7. References

Note: All URLs last accessed June 2014.

[1] ARM, “CoreMark Benchmarking for ARM Cortex Processors”, Application Note 350, Issue A, 2013.
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf

[2] ARM, “Cortex-M1 Processor” webpage.
Available: http://www.arm.com/products/processors/cortex-m/cortex-m1.php

[3] Aeroflex Gaisler, “LEON4 32-bit Processor Core”, product information sheet, January 2010.
Available: http://www.gaisler.com/doc/LEON4_32-bit_processor_core.pdf

[4] K. Chapman, “PicoBlaze for 7 Series FPGAs”, KCPSM6 Release 8, March 2014.
Available (as part of a download) from:
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/

[5] EEMBC website, “CoreMark FAQ” webpage.
Available: http://www.eembc.org/coremark/faq.php

[6] EEMBC website, “CoreMark Scores” webpage.
Available: http://www.eembc.org/coremark/index.php

[7] Xilinx, Inc., “LogiCore IP MicroBlaze Micro Controller System”, Product Specification, DS865, v1.1, April
2012.
Available:
 http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf

[8] Xilinx, Inc., “MicroBlaze Soft Processor Core” webpage.
Available: http://www.xilinx.com/tools/microblaze.htm

[9] Xilinx, Inc., “PicoBlaze 8-bit Embedded Microcontroller User Guide”, UG129, June 2011.
Available: http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf

[10]Xilinx, Inc., “PicoBlaze Soft Processor” webpage.
Available: http://www.xilinx.com/products/intellectual-property/picoblaze.htm

[11]Xilinx, Inc., “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet”, DS083 (v5.0), June
2011.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf

[12]Xilinx, Inc., “Virtex-4 Family Overview”, Product Specification, DS112, v3.1, August 2010.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf

[13]Xilinx, Inc., “Virtex-5 Family Overview”, Product Specification, DS100, v5.0, February 2009.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

[14]Xilinx, Inc., “Virtex-5 FPGAs: The Ultimate System Integration Platform”, Virtex-5 Family Brochure, 2008.
Available: http://www.xilinx.com/publications/prod_mktg/Virtex_family_brochure.pdf
99

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/tools/microblaze.htm
http://www.eembc.org/coremark/faq.php
http://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.eembc.org/coremark/index.php
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.arm.com/products/processors/cortex-m/cortex-m1.php
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/publications/prod_mktg/Virtex_family_brochure.pdf
http://www.gaisler.com/doc/LEON4_32-bit_processor_core.pdf

CHAPTER 4: Device Comparisons (“Why do I need Zynq?”)
[15]Xilinx, Inc., “Xilinx Extends Platform FPGA Performance with Award Winning MicroBlaze Soft
Processor”, Xilinx Press Release #0695, 9th October 2006.
Available: http://www.xilinx.com/prs_rls/2006/embedded/0695microblaze5.htm

[16]Xilinx, Inc., “Zynq-7000 All Programmable SoC”, Xilinx Backgrounder, 2013.
Available:
http://www.xilinx.com/publications/prod_mktg/zynq-7000-generation-ahead-backgrounder.pdf

[17]Xilinx, Inc., “Zynq-7000 All Programmable SoC Overview”, Preliminary Product Specification, DS190,
v1.5, September 2013.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

[18]Xilinx, Inc., “Zynq-7000 Technical Reference Manual”, UG585, version 1.7, February 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[19]R. York, “Benchmarking in context: Dhrystone”, ARM White Paper, March 2002.
100

http://www.xilinx.com/prs_rls/2006/embedded/0695microblaze5.htm
http://www.xilinx.com/publications/prod_mktg/zynq-7000-generation-ahead-backgrounder.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

5

Applications and

Opportunities
(“What can I do with it?”)

he application areas for Zynq have much in common with those of FPGA and
certain processor-based devices, and therefore it is useful to survey the general landscape
of applicable products and systems. As will be shown over the next few pages, examples
include: automotive, military, aerospace, image processing, wired and wireless communi-
cations, medicine, industrial control, and many others.

Having compared Zynq with three principal alternatives in Chapter 4, it has been estab-
lished that Zynq provides a distinct set of features and characteristics compared to other
available solutions. It is therefore useful to build on these observations, and to explore and
consider applications for which Zynq is particularly well-suited. The Zynq architecture can
be leveraged to meet the demands of applications with significant requirements in terms of
both high performance computation, and sequential, processor intensive functionality.
With this in mind, we will focus on three of them as case studies: Software Defined Radio
(SDR), Smart Systems and Networks, and Image and Video Processing.

Another important avenue to explore is that of the Zynq ecosystem, and the opportu-
nities which surround Zynq for developers of, for example, IP blocks, operating systems,
and other software solutions.

T

101

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
5.1. An Overview of Applications

In reviewing applications for Zynq, FPGAs, and related devices, a few important areas
can be identified. The possibilities are extensive, and this is just a representative selection.

5.1.1. Automotive

Cars nowadays contain a significant amount of electronics, ranging from engine
management, to the control of functions such as windows, mirrors and lighting, to
navigation and infotainment systems. Advanced Driver Assistance Systems (ADAS) refers
specifically to the collection of systems provided in cars for driver safety and convenience,
which can include: lane departure warning systems; road sign recognition (e.g. to warn the
driver when entering a lower speed limit); parking assistance; head-up displays; and even
monitoring of driver awareness. Examples are shown in Figure 5.1.

FPGAs, and now Zynq devices, can be used to realise these automotive systems [10],
[50]. The processing capabilities of Zynq make it particularly well suited to such systems,
while the opportunity to reduce the number of component devices is advantageous in a
market sensitive to cost and power, and which often has physical space constraints.

5.1.2. Communications

FPGAs are established platforms for undertaking the computationally intensive
processing required in both wireless communications and wired, packet-based systems.
This field is diverse, and includes transceivers for terrestrial and satellite transmissions,
mobile backhaul infrastructure, wired network equipment, radar, sonar, Global Positioning
System (GPS), and many other communication systems. Figure 5.2 shows a small selection
of examples.

© Xilinx © Xilinx

Figure 5.1: Automotive systems (left: head-up display; right: lane and road sign recognition)
102

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
In wireless communications, the radio spectrum is under increasing pressure, and
meanwhile the number of wireless systems and standards continues to expand. The
concept of flexible radio indicates the potential to better utilise the radio spectrum, and
consolidate radio equipment into a single device that is capable of dynamically changing its
operation. Zynq is an ideal flexible radio platform — more to follow on this in Section 5.3.
In wired communications, a similar level of flexibility is sought via the use of ‘softly defined
networks’, which have the ability to upgrade functionality under software control [39].

5.1.3. Defence and Aerospace

Defence systems include a wide variety of communications, image processing, aviation,
navigation, and transport systems, as well as weapons related technology. Defence
electronics usually require an increased level of robustness compared to civil applications,
with extended temperature ranges and security features [58].

An area gaining interest is the concept of the ‘networked battlefield’, wherein military
personnel and equipment are inter-connected with aircraft, satellites, signals intelligence
equipment and other defence systems [38]. The aim of the networked battlefield is to
gather, filter and share information, and hence optimise the effectiveness of miliary opera-
tions.

Civil aerospace applications include navigation and on-board flight systems, satellite and
ground communications, and radar systems.

5.1.4. Robotics, Control and Instrumentation

Industrial and scientific processes, ranging from manufacturing and utilities, to high
energy physics experiments, require precise control and instrumentation. Figure 5.3 shows

Figure 5.2: Communications systems (left: wireless basestation; middle: satellite groundstation;
right: wired network switches

© Xilinx © Xilinx © Xilinx
103

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
illustrative examples of a plant control room, electricity generation with wind turbines, and
apparatus for high energy physics experiments at CERN [4].

FPGAs and Zynq devices are very suitable platforms because they can perform fast, real-
time processing and handle multiple sensor inputs and actuator outputs simultaneously,
leveraging the capabilities of the PL. Zynq adds further potential for systems integration
and operational flexibility. For instance, the performance of a control loop could be
monitored, and its configuration altered if required, using software control. The PS can
also support a real-time operating system and/or GUI, if required.

Motor control algorithms are particularly important in some branches of industry. For
example, a survey of US manufacturing industry estimated that about 50% of the electrical
energy consumed in industry could be attributed to ‘machine drives’, i.e. motors, pumps
and fans [48]. Zynq is well suited to motor control, due to the high bandwidth link between
the PS and PL, enabling a tight feedback loop, and leveraging the DAC sampling capabil-
ities offered by the AMS block [26].

5.1.5. Image and Video Processing

Image and video processing encompasses a number of different applications including
cameras for consumer and professional use, video compression and storage systems,
broadcast equipment, display technology, industrial process monitoring, security and
surveillance, and many others.

The processing capabilities of Zynq are particularly valuable to ‘embedded vision’ appli-
cations, which require both deterministic processing of large amounts of pixel data, and
software algorithms for extracting information from images (suited to the PL and PS,
respectively) [8]. This theme will be explored further as a case study in Section 5.5.

© Xilinx © Xilinx © Xilinx

Figure 5.3: Control and instrumentation systems: (left: industrial control room; middle: wind tur-
bines; right: high energy physics experiments
104

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
5.1.6. Medical

An important issue in medical diagnosis is “seeing” inside the body, and this requires
medical imaging equipment such as Computer Tomography (CT) scanners, ultrasound
and Magnetic Resonance Imagers (MRIs). Enhancing and displaying the images obtained
via this equipment requires sophisticated image processing algorithms to be performed,
often on large data sets. As for other image processing applications, the Zynq mix of PL and
PS capabilities supports both high-speed parallel processing, and software-based
algorithms.

Further applications in medicine include the control of instruments in robot-assisted
surgery, and real-time surgical imaging, such as endoscopic equipment, patient monitoring
equipment and home health technologies [24].

5.1.7. High Performance Computing (HPC)

The umbrella term of ‘high performance computing’ covers applications with require-
ments for fast processing of large datasets, which can typically be accelerated with
dedicated hardware processing [44]. HPC includes, but is not limited to, such diverse appli-
cations as financial modelling [54], analytics for oil and gas exploration, processing of data
from scientific experiments, radio astronomy [15], and analysis of captured radar signals.
Also included are the infrastructure for data centres and cloud computing facilities that
often underpin HPC applications.

5.1.8. Others and Future Applications

The preceding pages have provided an overview of some of the key application areas for
FPGAs and Zynq. There are, however, many more current and potential applications than
can be covered in detail here ranging from audio signal processing to Zynq-based drones!

© Xilinx © Xilinx

Figure 5.4: Medical applications: (left: MRI scanning; right: robot assisted surgery)
105

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
A good way to keep up with the latest developments is to read the Xilinx Xcell Journal,
which is published quarterly and contains a variety of interesting articles on Xilinx
technology and applications. Many of these focus on Zynq, or are relevant to Zynq. The
Xcell Journal can be accessed online at the web address:

http://www.xilinx.com/about/xcell-publications/xcell-journal.html

Additionally, the Xcell Daily Blog often highlights the latest Zynq-relevant design news,
tutorials, and application stories. The Xcell Daily Blog is available at:

http://forums.xilinx.com/t5/Xcell-Daily-Blog/bg-p/Xcell

Some recent application examples featured in the Daily Blog include Phenox, a Zynq-
based drone that is being developed by researchers in Tokyo, via a KickStarter project [35],
the open-source instrumentation platform, Red Pitaya [36], and the collaborative open
source project, AXIOM, which is creating an ‘open cine camera’, based around the
ZedBoard Zynq development board [1].

5.2. When Can Zynq Really Help...?

As the summary of application areas in Section 5.1 has illustrated, Zynq is suitable for a
wide variety of applications, and there are many more possibilities than can be presented
here.

Many of these applications are suited to both FPGAs and Zynq, so it reasonable to pose
the question “When can Zynq really help?”. In answering the question, we can identify two
particular types of processing which may be required in a target application:

• High-speed, parallel, deterministic processing; and

• Sequential, dynamic, unpredictable processing.

These two processing styles are ideally suited to the PL and PS of Zynq, respectively.
Zynq provides the greatest benefit to applications requiring both of these processing styles,
particularly when implementation would otherwise require the use of two discrete
processing chips (e.g. an FPGA for high-speed vector processing, and a processor running
an operating system). Moreover, where the application involves close cooperation between
these two processing elements, the consolidated Zynq architecture can permit power
savings and design simplifications. The low-latency and high-bandwidth link between the
PS and PL is an advantage, and is particularly significant in systems with fast real-time
processing requirements and feedback loops.
106

http://www.xilinx.com/about/xcell-publications/xcell-journal.html
http://forums.xilinx.com/t5/Xcell-Daily-Blog/bg-p/Xcell

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
It is likely that different characteristics of Zynq will appeal most to different markets. For
instance, some application areas will be particularly cost sensitive — especially in high
volume products with low price points — and will benefit most from the reduced bill of
materials achievable via using a single Zynq device, as compared to two separate chips. In
other cases, the most valuable aspects might be the time-to-market acceleration achieved
via Zynq’s standards-based and IP-centric design flow, the reduction in power
consumption, or the low latency links between processing and logic resources.

As demonstrated in Chapter 4, Zynq offers enhanced embedded systems performance
compared to an FPGA alone, and therefore some products that traditionally incorporated
FPGAs will naturally transition to Zynq in future development iterations, when new
features and performance improvements are integrated.

Over the next three sections, we will present a small selection of case studies, focussing
on three important and progressive areas: communications, smart networks, and image
and video processing. In each case, the particular suitability of Zynq for each application is
demonstrated.

5.3. Communications: Software Defined Radio (SDR)

The first application we will consider is that of flexible radio. The rate of change in
wireless communications is so rapid that systems capable of adapting their operation would
be hugely valuable. Zynq is a platform capable of realising this flexibility.

5.3.1. Trends in Wireless Communications

One of the significant trends over recent years has been the rapid expansion in demand
for wireless connectivity and, in tandem, the number of radio standards in use. For
instance, your smartphone is likely to have separate radios for the cellular network,
supporting 2G, 3G and now 4G, and also WiFi (with its several variations), Bluetooth and
GPS reception. Each of these will require at least one discrete integrated circuit. Notebook
computers, tablets, e-readers, televisions and even cars are also equipped with at least some
of this functionality. Furthermore, away from the sphere of the consumer, multi-standard
radios are needed in transportation, emergency services, military and many other sectors.

In all of the above markets, it would make sense to consolidate the radio transceivers for
these various standards into a single, programmable device. Doing so would provide a
number of useful benefits:
107

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
• Reducing the required hardware from several chips to potentially just one, with
associated benefits for the cost, size, and power consumption of radio terminals.

• Improving geographical portability, i.e. allowing radio functionality to be adjusted in
response to location, where different modes of operation apply.

• Facilitating ready integration of support for new standards, without any need to
replace the hardware.

SDR is a technology that can enable these advantages to be achieved.

5.3.2. Introducing Software Defined Radio (SDR)

The concept of a Software Defined Radio — a radio which can be reconfigured while in
operation — is not a new idea, and has been around in some form since the mid-1990s
[29]. The term can refer to different aspects of reconfiguration, and thus means different
things to different people; however, here we regard it as the ability to support multiple radio
standards on a single device, as controlled by software. Thus, SDR represents a mechanism
for achieving consolidation of radio functionality as described above.

SDR has been predominantly associated with military applications to date. In particular,
the US military started its first major SDR programme, Joint Tactical Radio System (JTRS),
in 1998 (since evolved into the Joint Tactical Networking Centre (JTNC) [22]), with the
basic aim of reducing the amount of radio equipment soldiers were required to carry while
on operations. The resulting military SDR radios have typically been physically large and
expensive to produce, and these characteristics are incompatible with the requirements of
mass-market civil, commercial and consumer communications. The availability of flexible,
capable hardware platforms at acceptable cost levels has stimulated change, and the appli-
cability of SDR to non-military applications is now gaining interest. Meanwhile, military
SDR continues to advance, with a significant goal being convergence to a common
standard for SDR, in order to support and enhance communications between allies [62].

5.3.3. SDR Implementation and Enabling Technologies

The use of reconfigurable processing platforms underpins the development of modern
SDR. While early SDRs achieved switchable functionality in part through component
redundancy, now SDR has vastly enhanced applicability and possibilities, because
adaptable radios can exploit the capabilities of devices like FPGAs and Zynq. To under-
stand why this is, we must first consider the definition of SDR (according to the IEEE and
SDR Forum, [55]). These organisations jointly define SDR as:
108

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
“Radio in which some or all of the physical layer functions are software defined.”

This definition confirms that the software defined aspects reside in the physical layer
(PHY), i.e. the part of the radio directly adjacent to the Radio Frequency (RF) circuitry and
air interface. The PHY is computationally intensive, implementing high-speed filtering and
other arithmetic-based DSP algorithms, and exchanging data with the DAC and ADC. As
some parts of the PHY layer have a very high degree of computational complexity, software
can only be used to define the behaviour of these elements — it is unsuitable for imple-
menting the processing itself. The less complex computation, such as modulation and
coding, can be performed in either software or hardware. SDR therefore calls for the close
integration of a processor running software to control PHY functionality, and a high-
speed, computationally parallel resource to undertake PHY processing. FPGA-type
programmable logic is ideal for implementing the PHY, especially given its capabilities for
dynamic reconfiguration (to be discussed further in Section 5.6), while an ARM processor
provides a suitable platform for SDR software. The combination of these two key compo-
nents of the SDR architecture into a single device, such as Zynq, can therefore be
considered a perfectly suited solution, and in fact there are already SDR products on the
market based on Zynq [60]. As reviewed in Chapter 4, Zynq offers the benefits of a reduced
bill of materials, lower power consumption, and tighter integration compared to a two-chip
configuration. All of these characteristics are highly compatible with the aims of SDR.

As reviewed in [23], wireless standards can vary in several aspects of PHY processing,
including packet format, bit rate, error correction coding, modulation scheme, pulse shape
and carrier frequency. The reader is referred to [17] for an excellent tutorial on communi-
cations architectures, SDR, and the motivations for developing these more adaptable and
interoperable radios. Achieving an architecture capable of supporting several standards is
an interesting problem, especially when the bit rate and derived parameters are not conven-
iently related. The facilities of modern FPGA and Zynq devices can, however, enable such
systems to be achieved.

Figure 5.5 provides a simple example of an SDR, in which the Intermediate Frequency
(IF) carrier frequency of a transmitter can be programmed by setting a register via
software. The register applies a step size input to a Numerically Controlled Oscillator
(NCO), thereby controlling its frequency of oscillation.

 As mentioned above, many other aspects of a radio can also be reconfigured, for
example the modulation scheme could be dynamically selected from a pre-defined set of
schemes, and the pulse shape could be changed by reprogramming filter coefficients.
Where the change of wireless standard implies a fundamentally different structure of
computation (for instance changing from a Code Division Multiple Access (CDMA)-based
109

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
standard to an Orthogonal Frequency Division Multiplexing (OFDM)-based standard),
switching the functionality is best accomplished by reconfiguring part of the FPGA
hardware. This can be achieved using Dynamic Partial Reconfiguration (DPR) techniques,
which will be covered in Section 5.6.

5.3.4. Cognitive Radio

Many see the natural evolution of SDR to be Cognitive Radio, in which the adaptability of
the radio is exploited to enhance use of the RF spectrum [23], [41] [53]. At present, much
of the spectrum is licensed and yet under-used, even while frequency bands supporting
certain classes of use are under extreme pressure. Dynamic spectrum access, i.e. employing

PHYHigher layers PHY Higher layers

TRANSMITTER RECEIVER

antenna antenna

radio channel

direction of data flow

D

A

C

Baseband

DSP

Interpolate

Interpolate

NCO

R
E
G

set IF carrier frequency via

NCO software control register

cos

sin

set_freq()

Figure 5.5: Example of SDR with IF carrier frequency programmability
110

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
radio equipment with the capability to sense local conditions and respond accordingly, is
an attractive proposition, as this could ultimately enable better spectrum utilisation. The
implementation of cognitive radio does however need to address the various risks it inher-
ently poses, not least to protect licensed users of the spectrum.

Research into cognitive radio is an active area, in both academia and industry [20], [32],
[52]. Developing better ways to access and manage the RF spectrum could have huge
commercial and societal impacts, but the complexity of the problem is also significant. Like
SDR, realisations of cognitive radio solutions will need to couple high-speed, parallel, and
reconfigurable hardware with a processor capable of supporting complex software
algorithms, and therefore Zynq is clearly a strong candidate for research and development
in this area. For instance, researchers at Trinity College, University of Dublin have
developed the Iris software framework for cognitive radio [45], and consider its operation
on Zynq in [49]. At the time of writing, the first commercial cognitive radios are beginning
to emerge [56], and this could prove to be a very exciting area of technological innovation.

5.4. Smart Systems and Smart Networks

Staying with the communications theme, the term ‘smart’ is becoming near ubiquitous,
the idea being that adding intelligent systems around us can enhance our lives, meanwhile
achieving cost savings and environmental benefits. The realisation of smart systems
implies smart networks to underpin them, and we consider both over the next few pages.

5.4.1. What is a Smart System?

The term smart actually finds its way into a number of application areas, including smart
grids, smart buildings, smart homes, smart transport, smart cities, smart agriculture, and
others. A pertinent question would be, what makes these specifically smart systems?

Actually there is no single established definition of smart. It is however interesting to
note the definition applied by the Organisation for Economic Co-operation and Devel-
opment (OECD) [33], which will serve our discussion in this chapter:

“An application or service is able to learn from previous situations and to communicate the
results of these situations to other devices and users. These devices and users can then change
their behaviour to best fit the situation. This means that information about situations needs to
be generated, transmitted, processed, correlated, interpreted, adapted, displayed in a
meaningful manner and acted upon.”

The role of a smart system can therefore be interpreted as optimising something in
response to the circumstances it observes. But what might that something be? This
111

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
question is addressed in the next section, in which a selection of smart systems are
described.

5.4.2. Examples of Smart Systems

A number of smart systems types were highlighted in the introductory part of this
section — these are not the only smart systems around, but they are arguably some of the
most prominent at the time of writing. It is useful to understand what these example
systems do, and their respective benefits.

• The term smart grid refers to the augmentation of the electrical power distribution
network (the ‘grid’) with sensors, telecommunications networks, and automation,
such that it can be more effectively managed. The primary potential benefits of
smart grids are: (i) to increase energy efficiency, which helps the environment and
enables cost savings; (ii) to improve the network’s reliability and response to local
faults; and (iii) to automate the collection of data for metering purposes.

• Smart agriculture refers to the enhancement of crop, land, and livestock
management through the use of monitoring and automated systems. This might
include the adjustment of greenhouses to the optimum temperature and humidity,
the control of outdoor irrigation and drainage systems in response to local weather
conditions, and the monitoring of livestock health, with updates and alerts provided
to the farmer [9].

• Smart transport refers to the integration and dynamic management of transport
networks, infrastructure, signalling and passenger information. Smart transport
systems can encompass both public and private transport, including freight as well as
passengers. The aims of smart transport can include management of traffic flow
(minimisation of congestion), reduction of emissions, and the considerable
economic benefits of faster and more reliable connections [40]. Taken in the urban
context, smart transport is considered an important aspect of the smart city [6].

• A smart building uses a network of sensors and actuators to adjust aspects of its
operation in response to detected conditions and the current population, e.g.
lighting, heating and ventilation systems. A smart building uses less energy, and is
therefore ‘greener’ and cheaper to run, while also providing a more pleasant
environment for its inhabitants [42]. The term smart buildings tends to refer to non-
residential buildings such as government and private offices, schools, airports,
shops, and factories.
112

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
• Smart homes use similar principles to smart buildings, bringing cost and environ-
mental benefits to the domestic setting. In addition to managing the use of heating,
lighting and electricity usage, the smart home may also include aspects of security
and entertainment in the home. An illustration of a smart home is provided in
Figure 5.6.

smart gas meter

security

system

networked

entertainment

intelligent lighting

temperature &

ambient light

sensors in

each room

smart electricity meter

energy efficient

heating / cooling

in each room

soil sensors and

smart watering

wireless internet

to all rooms

Figure 5.6: Some aspects of a smart home
113

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
• Smart cities aim to integrate and intelligently manage the various systems of the city,
for the purposes of sustainability, economic growth, and citizens’ quality of life. This
may include transport, buildings, utilities, etc., but also internet provision in public
areas, monitoring and maintenance of infrastructure, delivery of council services,
security, and disaster management [43], [51].

Of course, these are just a few examples of smart systems. There are others, and the
portfolio of ‘smart’ is likely to expand in the future.

5.4.3. Smart Networks: Communications for Smart Systems

It is clear that all of these smart systems will require communications infrastructure to
underpin them. Given the variety of scenarios described, these ‘smart networks’ may
however be very different. For instance, we have mentioned home and building networks
(very local, and mostly indoors), farm networks (larger area, outdoor rural setting) and
urban networks (very large area, a mixture of outdoor and indoor, dense, and dynamic).
The term ‘smart network’ therefore does not prescribe a particular technology, or even
specify a wired or wireless network, but rather it refers to a network that is adaptable,
expandable, and intelligent. The topology of a smart network is also flexible. Smart systems
could entail at least an initial stage of distributed processing (i.e. processing on the
individual nodes of the network), rather than for all raw data to be communicated back to a
central point.

Of all the cited examples, the smart city would seem the most challenging, but also the
most enticing prospect. Cities are complex, but they are also economic powerhouses,
centres of education, culture and innovation, and homes to millions of people. The impact
of improving the economic, social and environmental performance of a city could be huge,
and this is evident from the aspirations of cities already engaged in smart city projects [16].

Smartness would be embedded into various aspects of city life, but there could be no
one-time retrofit to turn a city into a smart city, without thought to further development.
Smart networks will evolve, and therefore their infrastructure must be capable of evolving.
They should also be adaptable in response to particular events, for example emergencies or
damage to the network itself, which could require the routing of network traffic to be
dramatically altered. The smart networks underpinning smart systems must therefore
support intelligence, dynamism, and expansibility.

 With these factors in mind, the relationship between smart systems, smart networks,
and Zynq can be understood. The resources that Zynq provides enables the embedding of
intelligence (e.g. software algorithms running on the PS), support for sensing, processing
and analysing data (input/output facilities on the PL), communications interfaces and
114

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
networking support [57]. Zynq is reconfigurable and integrated, with various sizes of
device available to cater for different complexities of smart networks and systems.

5.4.4. Related Concepts

Smart cities and smart networks are closely related to some other current themes in
technology, including Machine-to-Machine (M2M) communications, which refers to
networked nodes that function independently (without human intervention); and the
Internet of Things (IoT), a collective term for the networks formed by these nodes.

The information generated by smart networks, especially where there is a large amount
of such information, can be termed Big Data. Big Data implies sets of data that are very
large and/or complex, and the effective analysis of Big Data may require specialist
algorithms and methods, but the intended outcome is to enable better decision-making
than would otherwise be possible [5].

Perhaps the most widely familiar of these terms, the Cloud is a computing resource
which resides remotely, and can be accessed from anywhere. Typically cloud computing
resources are very flexible and scalable, and consequently there is great interest in
processing big data in the cloud. Conceivably, a smart city could produce Big Data from its
smart network of intelligent, Zynq-based nodes, for analysis in the cloud and subsequent
feedback to the city control room, enabling better decisions to be made both by the smart
system itself, and the humans overseeing its operation.

5.5. Image and Video Processing, and Computer Vision

The area of image and video processing is diverse, and features in consumer and
commercial products, as well as finding use in medicine, industry, defence, and security,
amongst many other areas.

Image processing is concerned with single, or ‘still’ images, whereas video processing
refers to a temporal series of images (‘frames’), usually at a specific frame rate. Computer
vision (or ‘machine vision’ or ‘embedded vision’) systems add an aspect of intelligence,
such that meaning can be extracted from images or video data. As appropriate, decisions
may then be taken based on this information.

5.5.1. Image and Video Processing

There are a number of techniques particular to image and video processing, which can
generally be classified as: (i) enhancing or otherwise altering images; (ii) extracting infor-
mation from them; or (iii) compressing image and video data. Many books have been
115

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
written on these subjects, and there is insufficient scope to present detailed review here,
other than to mention a few representative examples. The reader is referred to [13] for
theoretical background and examples, and [3] for an implementation perspective.

Image processing is characterised by its huge parallelism: individual images, or equiva-
lently video frames, are composed of two dimensional arrays of pixels, and there may be
more than 1,000 pixels in both the X and Y axes. For instance, Full High Definition (HD)
video is usually defined as 1920 x 1080 pixels, equivalent to 2,073,600 pixels in total.
Consider also that each pixel comprises three channels in order to represent colour! With 8
bit channels for red, green and blue data, this corresponds to 24 bits per pixel, and
49,766,400 bits per single HD image. Images from a digital camera might be considerably
bigger. Bearing in mind these large dimensions, any processing involving individual pixels
therefore requires a huge number of computations to be performed in parallel, a task which
is ideally suited to an FPGA, or the PL part of the Zynq device. Of course, it is desirable to
reduce the amount of data to be processed, and some image processing can be performed at
a higher level of abstraction, operating on less data to perform more sophisticated
algorithms, such as might be undertaken in software. We will return to this topic in Section
5.5.3 and later in Section 5.5.4.

Much of the focus in video processing is concerned with compression. Single images are
often compressed in the spatial domain to reduce their file size, but there is a more acute
need for compression in video applications where, with frame rates of up to 100 frames per
second (or higher in some specialist applications), a much larger amount of data is
involved, and there may also be real-time processing constraints. The temporal domain
does however provide a further opportunity for compression, as consecutive video frames
normally exhibit a high degree of commonality. Algorithms can be used to send full, fresh
frames only a fraction of the time, and in between, to code the difference between frames.
Video compression standards are well established, and continue to evolve and improve
[21], [30].

5.5.2. Computer Vision

Computer vision systems can act upon still images or video, and are able to extract
meaningful information from the content of images. An example might be recognising
shapes, colours, or the sizes of objects within an image. This can have a number of practical
applications, ranging from manufacturing, to surveillance, traffic management, food
processing, medicine, biometrics and even space exploration.

To provide an illustrative example, it might be desirable to identify individual people
within Closed Circuit Television (CCTV) footage, such that the number of people present
116

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
in the captured area can be determined. Furthermore, a computer vision system might be
able to detect events such as fights or disturbances. Commercial examples of Zynq-enabled
computer vision are now beginning to emerge, such as visual scene understanding [46]. Of
course, as mentioned above, there are also more routine uses of computer vision, such as
classifying the quality of fruit and vegetables based on size, shape, and surface defects! [47].

5.5.3. Levels of Abstraction

 Image processing (as a whole, i.e. to include video processing and computer vision) can
be segmented into three levels of abstraction, which are characterised by the amount of
image data being processed, and the amount of knowledge available regarding the content
of the image. As will be discussed in Section 5.5.4, this selection of abstraction levels, and
the types of processing implied, make Zynq a very suitable platform for image and video
processing, and computer vision in particular.

The abstraction levels are shown in Figure 5.7 and clarified below (in order from bottom
to top):

• Pixels — Pixel-level processing represents the lowest level of abstraction, with the
highest amount of data to process, and very little knowledge about the content and
meaning of the image. Pixel-level processing can include adjustments to the colour
balance or contrast of an image, or neighbourhood filtering (such as smoothing

Description

Features

& Objects

Pixels

increasing know
ledge

decreasing data

Content Knowledge Image Data

le
v
e
l
o
f
a
b
s
tr
a
c
ti
o
n

Figure 5.7: Abstraction in image processing
117

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
operations to reduce noise, or Sobel filtering to highlight edges [3], [13]). Usually
these pixel-level tasks, of which there may be several stages, precede other opera-
tions, and hence they are referred to as ‘pre-processing’.

• Features and Objects — As part of the process of extracting information from an
image, features and objects are detected. This can include the identification of lines,
curves, shapes and regions. Various techniques can be employed to help accomplish
the transition from pixels to features and objects, including the Hough transform,
colour identification, thresholding, and morphology [3], [13].

• Description — Having identified relevant features or objects in the image, the final
stage is to attain knowledge of what the image represents, i.e. a description of its
content. At this stage, the information is not an image, but a textual or numeric
description. Achieving a description may involve extracting parameters of the
identified features and interpreting them, or classifying the image based on a
comparison with pre-determined criteria, or a training set [3], [13].

Computer vision requires features and objects to be identified, as described above, such
that meaning can then be extracted from the image. This can involve a complex set of
operations and software algorithms. For instance, it might be necessary to analyse the
detected lines within an image, to determine whether it contains a vehicle, and possibly
even to classify the type of vehicle as a motorcycle, car, bus, etc. This stage would represent
a transition to the highest level of abstraction shown in Figure 5.7, wherein a description of
the image content is achieved. For example, in Figure 5.8, the image shows cars at a
junction. The number of cars can be detected and recorded using computer vision
algorithms, and potentially even categorised according to the direction of travel.

Video processing applications may additionally call for object tracking, e.g. if a person of
interest is identified in CCTV footage, that person’s movements can be tracked over time as
they move through the field of view. Similarly, if the view of the junction was provided as
video, then vehicles could be tracked.

The data obtained from image processing and computer vision algorithms may be used
as data within higher-level applications. For example, in the vehicle recognition scenario,
the computer vision system could provide statistics about vehicles passing through a
junction, to be used for traffic management and urban planning.

5.5.4. Implementation of Image Processing Systems

Considering the implementation of image processing systems in general, it is significant
that different types of processing are required to operate on different types and volumes of
118

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
data. Noting again Figure 5.7, the starting point may be a very large amount of pixel data on
which simple, repetitive operations are performed, while at higher levels of abstraction,
computer vision techniques operate on smaller sets of data (perhaps representing lines or
shapes), but using more complex algorithms.

For this reason, Zynq is a highly optimised platform for image processing. The PL is well
suited to fast, parallel operations like those required for pixel-level image processing.
Computer vision functionality can be implemented in software for execution on the Zynq
PS, and integrated with higher-level software applications as required. The transition
between the two, via the detection of features and objects within the image, might be
accomplished using the PL with appropriate interfacing to the PS, or by leveraging the
SIMD facilities of the NEON processor. Extensive support for NEON is available in third
party image and video processing products [28].

Original Image Cars Detected

Figure 5.8: Computer vision can be used to detect cars at a junction
119

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
In addition to the device architecture, we should also consider the role of Xilinx and
third party development tools in enabling the design of image processing systems for Zynq.
The following are worthy of particular note:

• Xilinx IP blocks — A number of IP blocks are available in IP Integrator for image
and video processing applications, including video memory, image enhancement,
and colour adjustment functionality.

• OpenCV — Open Computer Vision (OpenCV) is an open source project providing a
set of C/C++ libraries for image and video processing [34]. The facilities of OpenCV
can be used to develop software algorithms for running on the PS.

• Vivado HLS Video Libraries — Vivado HLS includes specific support for image and
video processing, via a library of functions synthesisable to HDL. These can replace
selected OpenCV functions, and therefore functionality can be easily partitioned
into hardware if desired [31].

• MATLAB / Simulink — Extensive facilities are available for image and video
processing, and computer vision in MATLAB and Simulink [27]. In addition to
providing relevant functions and a development environment, developed algorithms
can be converted to C/C++ code for implementation on Zynq.

5.5.5. Computer Vision on Zynq Example: Road Sign Recognition

Computer vision has several applications in automotive systems and traffic
management, including driver safety and assistance systems, intelligent transport systems,
traffic enforcement, traffic flow analysis, automatic number plate recognition, and more
[7], [14].

An interesting application was addressed in [37], built upon the Zynq platform. The
problem was to identify road signs based on captured images, with the aim of informing
driver assistance systems (or even autonomous vehicles) about the environment
surrounding the vehicle, and any restrictions in force. The system comprises three parts:
pre-processing in the Zynq PL (colour adjustments etc.), further processing on the PS
(morphology, edge and shape detection), and finally classification of signs by comparing
them against a database (also in the PS). The authors made the point that the system was
designed in a total of only six weeks, due to the convenience of AXI, the support provided
by the Xilinx tools, and functionality available via the OpenCV library.
120

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
5.6. Dynamic System-on-Chip

All of the applications mentioned in this chapter either demand, or could benefit from, a
platform that is flexible, in terms of the functionality implemented in the PL. As will be
discussed in this section, the technique of DPR provides scope for a part (or parts) of the
PL to be completely reconfigured during run time.

5.6.1. Run Time System Flexibility

Zynq All Programmable SoCs provide flexibility at design time, as a result of the two
different parts of the device, the support of development tools and processes, and the use of
AXI interfacing. There is an additional degree of convenience due to the Vivado HLS tools,
and the potential to implement C-described functionality on either the PS or PL.

At run time, software on the PS can control functionality residing in the PL by passing
commands, and other parameters such as filter coefficients, via software registers or shared
memories. This constitutes run time flexibility.

While software control of hardware affords a good degree of scope to alter functionality
during run time, there are some circumstances where the desired flexibility extends beyond
setting parameters, and more fundamental changes are required to the component(s)
implemented in hardware. For example, it might be desirable to realise an SDR that can
support multiple communications standards with different architectures, only one of which
is actively used at any given time. In fact, any application which requires different hardware
components, but does not need them all simultaneously, could benefit from time-multi-
plexing of the relevant functionality.

5.6.2. Dynamic Partial Reconfiguration (DPR)

The technique of DPR involves designating a region (or regions) of the PL for reconfigu-
ration during run time. These areas are referred to as Reconfigurable Partitions (RPs), and
their functionality can be completely altered while the rest of the PL continues to operate.
Importantly, reconfiguration of an RP is achieved without affecting any other part of the
PL.

There may be multiple RPs on a Zynq or FPGA device, and each RP has a set of Recon-
figurable Modules (RMs) associated with it. Here we will focus on a single RP for the
benefit of clarity.

An RP may have any arbitrary number of corresponding RMs available, but only one of
them occupies the RP at any given time, and hence, functionality is time-multiplexed onto
a specific part of the PL. This concept is demonstrated in Figure 5.9.
121

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
From the designer’s perspective, the RP must be sized to accommodate the largest of the
RMs deployed on it, because this ensures that sufficient PL resources are available for all of
the designs to be supported. The use of DPR also implies that a set of partial bitstreams are
created in advance (one for each of the RMs) and appropriately stored, such that these files
can be downloaded onto the PL to configure the RP during run time. In operation, the
software application hosted on the PS usually coordinates the execution of DPR.

5.6.3. DPR Application Examples

DPR has clear relevance to two of the applications featured in this chapter in particular.

Let us consider first the example of SDR. In this case, we suppose that the PHY of a
wireless communications transceiver is implemented on the Zynq, with software control.
The SDR may need to accommodate fundamentally different hardware structures
depending on the set of wireless standards to be supported. Without DPR, this would
necessitate implementation of all required architectures in parallel, implying considerable
resource cost; with DPR, the required functionality may be consolidated to a single archi-
tecture comprising: (i) components common to all standards; and (ii) RPs with associated
RMs, for all sections whose hardware structures vary between standards [18].

PL

PS

RP

RM
1

RM
2

RM
3

RM
4

RM
5

F
fixed

reconfigurable modules

(partial bitstreams)

Figure 5.9: The use of dynamic partial reconfiguration to time multiplex modules in the PL
122

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
This concept for a flexible SDR transmitter architecture is shown in Figure 5.10, where it
is assumed that the SDR comprises four functional blocks: coding, modulation, a
transform, and a digital upconverter. We assume that the last of these components is
common to all variations on the architecture, while there are different RMs for each of the
others. The appropriate coding RM, modulation RM, and transform RM are chosen at run
time and coordinated by the PS. (Please note that this is a simplified architecture for the
purposes of discussion, and that the digital upconverter is assumed common for illus-
tration only — it need not be.)

It is worth bearing in mind that DPR complements rather than replaces the other
available methods for flexibly defining functionality; DPR is appropriate only where the
underlying hardware structure needs to be changed. Some of the other components of the
radio are better realised without DPR, but simply using software control, such as the NCO
shown in Figure 5.5 on page 110.

Coding

RP

M
o
d
u
la
ti
o
n

R
P Transform

RP

Digital

UpConverter
(common to all)

Coding RM
1

Coding RM
2

Mod RM
1

Mod RM
2

Mod RM
3

Transform RM
1

Transform RM
2

Coding RM
3

Mod RM
4

SDR Transmitter with DPR

download partial bitstreams

as controlled by PS

Figure 5.10: A flexible SDR architecture using DPR
123

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
Secondly, considering that image processing algorithms often comprise several different
stages of processing, DPR offers the potential to make a dynamic selection of filters. For
instance, in [25], DPR is used to offer a selection between a Sobel edge detection filter, and
a Sepia filter for altering the colours in the image. There is an RM for Sobel and an RM for
Sepia, and the chosen filter type is downloaded as a partial bitstream to the RP.

Image processing applications without tight real-time processing requirements can also
exploit DPR to iterate through the stages of an image processing algorithm serially, perhaps
even using a single RP. A design of this type was demonstrated in [11] for the FPGA imple-
mentation of a biometric fingerprint recognition system, and the scheme would be equally
applicable to Zynq. Similarly, [10] mentions an example in the automotive field, where
processing could switch from lane departure warning to rear-view camera depending on
the car’s direction of travel.

5.6.4. Benefits of DPR

The run time flexibility afforded by DPR is a great benefit, to the extent that it might be
easy to forget about some of the other advantages of using this technique. These can be
summarised as follows:

• Potential to use a smaller device — The time multiplexing of PL-based components
made possible via DPR can enable a smaller Zynq device to be used.

• Feature richness — As there is no limit to the number of RMs, aside from that
implied by available storage, then it is possible to provide a greater selection of
functionality.

• Lower power consumption — If the use of DPR enables the use of a smaller Zynq
device, this implies lower static power consumption. Dynamic power consumption
can also be reduced as a result of not needing to implement all PL modules in
parallel.

• Cost savings — The use of a smaller device enables a direct cost saving. A reduction
in power consumption also reduces operational costs.

• Adding new functionality — New functionality can be added simply by providing a
new partial bitstream file, i.e. no reworking of the PL hardware design is needed.

For these reasons, DPR is a useful technique, and potentially applicable in a number of
different application areas.
124

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
5.7. Further Opportunities: the Zynq ‘EcoSystem’

The discussion in this chapter so far has focussed on applications of Zynq, and implicitly
that these areas represent opportunities for developing products based on Zynq. There is
also another type of opportunity — arguably a less obvious one — relating to software and
hardware support products for Zynq. These add value to the core product and associated
development tools, and thus enhance its possibilities. Many third party developers are
already part of this activity.

 During the remainder of this section, we describe the current shape of the Zynq
‘ecosystem’, and review some of the opportunities for developers to contribute to, and
benefit from, the ecosystem [61].

5.7.1. What is the Ecosystem?

The notion of a technology ecosystem will be familiar to many through their experiences
of consumer electronics. Consider smartphones in particular. The phone manufacturer
provides the phone and basic operating system, and it may host an ‘app store’ or similar,
where users can obtain additional applications to run on their phone, should they desire.
The apps in the app store are almost exclusively developed by companies other than the
phone manufacturer, and there may be several thousands of different apps available,
catering both for mainstream interests like organising music or checking the weather
forecast, to more specialised tasks such as tracking the path of your cycle rides. There is
also an array of hardware accessories available for smartphones, much of which is from
third parties, including cases and screen protectors, portable speakers, chargers, car kits
and more.

 The situation with Zynq is somewhat similar. Xilinx manufactures the silicon devices, a
small set of development boards, and provides the core set of development tools, but there
are also opportunities for other companies to develop software tools, applications and
hardware-based products around Zynq. The Zynq ecosystem includes software devel-
opment environments, specialist software libraries, IP development tools, packaged IP, OSs
and middleware, software applications for deployment on Zynq, virtual platforms,
hardware development boards, add-on modules, and other accessories. Over time, and as
applications of Zynq consolidate and diversify, its ecosystem will become a richer resource.
Additionally, ARM processors have an ecosystem of their own, and this can be exploited
too [2].

A graphical representation of the Zynq ecosystem is provided in Figure 5.11, showing a
representative (but not comprehensive) selection of the software, hardware and supporting
125

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
resources available. The ecosystem includes Xilinx Alliance Program partners and other
third party developers of Zynq-based or Zynq-relevant products and services [59], [61].

5.7.2. What is the Opportunity?

Xilinx encourages third parties to develop and market products and services around
Zynq. The market for these offerings is primarily the community of companies developing
Zynq-based products, which is growing steadily; however, given that the device is
comprised of two standard parts (an ARM processor and FPGA fabric), there is potential
for portability to these platforms too. For example, the opportunity for IP developers is to
create IP blocks valuable to users of Zynq, and these would also be applicable for general
FPGA usage. The Zynq ecosystem therefore represents a business opportunity for
technology companies to become involved in.

Aside from commercial ventures, there is also scope for open source projects and free-
to-use software. In fact, several components of the ecosystem as depicted in Figure 5.11 are
open source, for instance the widely used OpenCV libraries for computer vision [34], and
the FreeRTOS real-time operating system [12].

From the opposite perspective, i.e. that of a product developer, the ecosystem provides
an opportunity to obtain important resources for creating systems based on Zynq. It repre-
sents an opportunity to leverage third party IP, software components, development tools
etc., enabling developers to accelerate their design and verification processes, and therefore
to reach the market more quickly than would otherwise be possible.
126

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
Figure 5.11: The Zynq ecosystem
127

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
5.8. Chapter Review

This chapter has demonstrated Zynq’s wide-ranging applicability by reviewing a
selection of applications for which it is well suited. Three particular areas were reviewed in
detail as case studies, namely SDR, smart systems and networks, and image and video
processing. In each case, it was shown that flexibility and expansibility is important, and
therefore that Zynq is an ideal platform. The need for different types of processing was also
highlighted: in applications such as computer vision, there is a need for both high-speed,
parallel processing, and ‘smarter’ algorithms running in software on a processor.

The technique of DPR was introduced, and it was shown that DPR can offer a number of
benefits, not just in terms of operational flexibility, but also the cost, power consumption
and upgrade-ability of Zynq based systems.

Lastly, the Zynq ecosystem was discussed, and the broad and expanding portfolio of
third party product offerings (both free and commercial) was reviewed. It was noted that
participating in the ecosystem constitutes a commercial opportunity for providers of
resources, while for consumers of these resources, it represents a valuable mechanism for
accelerating product design cycles.

5.9. References

Note: All URLs last accessed June 2014.

[1] Apertus.org, “AXIOM Alpha Progress Report” webpage, May 2013.
Available: https://www.apertus.org/article-axiom-alpha-update

[2] ARM Ltd., “ARM Community” webpage.
Available: http://www.arm.com/community/

[3] D. Bailey, Design for Embedded Image Processing on FPGAs, Wiley-IEEE Press, 2011.

[4] T. Barnaby, “FPGAs Help Measure Trajectory of Particles in CERN’s Proton Synchrotron”, Xcell Journal,
Fourth Quarter 2009, pp. 22 - 26.

[5] BBC News, “How New York is Releasing its ‘Big Data’ to the Public”, 12th October 2013.
Available: http://www.bbc.co.uk/news/technology-24505860

[6] A. Bohandi, “Smart Transport”, Engineering & Technology, Vol. 7, Issues 6, July 2012, pp. 70 - 73.

[7] N. Buch, S. A. Velastin and J. Orwell, “A Review of Computer Vision Techniques for the Analysis of Urban
Traffic”, IEEE Transactions on Intelligent Transportation Systems, Vol. 12, No. 3, September 2011, pp. 920 -
939.
128

http://www.bbc.co.uk/news/technology-24505860
http://www.arm.com/community/
https://www.apertus.org/article-axiom-alpha-update

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
[8] B. Dipert, J. Alvarez and M. Touriguian, “Embedded Vision: FPGAs’ Next Notable Technology
Opportunity”, Xcell Journal, First Quarter 2012, pp. 14 - 19.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell78.pdf

[9] A. Dembosky, “Silicon Valley links with Salinas Valley to make Farming ‘Smart’”, Financial Times (ft.com),
28th June 2013.
Available: http://www.ft.com/cms/s/0/55656cf2-dff4-11e2-bf9d-00144feab7de.html#axzz2iIdk82Be

[10]F. Fons and M. Fons, “FPGA-based Automotive ECU Design Addresses AUTOSAR and ISO 262622
Standards”, Xcell Journal, First Quarter 2012, pp. 20 - 31.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell78.pdf

[11]F. Fons and M. Fons, “Making Biometrics the Killer App for FPGA Dynamic Partial Reconfiguration”, Xcell
Journal, Third Quarter 2010, pp. 24 - 31.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf

[12]FreeRTOS website.
Available: http://www.freertos.org/

[13]R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd Edition, Pearson, 1998.

[14]A. Guan, S. H. Bayless, and R. Neelakantan, “Connected Vehicle Insights: Trends in Computer Vision”,
Intelligent Transportation Society of America, Technology Scan Series 2011-2012.
Available: http://www.itsa.org/knowledgecenter/technologyscan/computer-vision-report

[15]G. Hampson et al, “Xilinx FPGAs Beam Up Next-Gen Radio Astronomy”, Xcell Journal, Second Quarter
2011, pp. 30 - 35.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell75.pdf

[16]G. P. Hancke, B. de Carvalho e Silva, and G. P. Hancke Jr., “The Role of Advanced Sensing in Smart Cities”,
Sensors 2013, pp. 393 - 425.
Available: http://www.mdpi.com/1424-8220/13/1/393

[17] f. harris and W. Lowdermilk, “Software Defined Radio: part 22 in a series of tutorials on instrumentation
and measurement”, IEEE Instrumentation and Measurement Magazine, Vol. 13, Issue 1, February 2010, pp.
23 - 32.

[18]K. He, L. Crockett and R. Stewart, “Dynamic Reconfiguration Technologies Based on FPGA in Software
Defined Radio System”, Journal of Signal Processing Systems, Vol. 69, Issue 1, October 2012, pp. 75 - 85.

[19]T. Hill, “Motor Drives Migrate to Zynq SoC with Help from MATLAB”, Xcell Journal, Second Quarter
2014, pp. 32 - 37.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell87.pdf

[20]IMEC, “Wireless Communication: Cognitive Radio” webpage.
Available: http://www.imec-nl.nl/nl_en/research/green-radios/cognitive-radio.html

[21]International Telecommunications Union, “H265: High Efficiency Video Coding”, Recommendation
H.265 (04/13), April 2013.

[22]“Joint Tactical Networking Centre” webpage.
Available: http://www.jtnc.mil/Pages/Home.aspx
129

http://www.xilinx.com/publications/archives/xcell/Xcell78.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell75.pdf
http://www.imec-nl.nl/nl_en/research/green-radios/cognitive-radio.html
http://www.jtnc.mil/Pages/Home.aspx
http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf
http://www.itsa.org/knowledgecenter/technologyscan/computer-vision-report
http://www.mdpi.com/1424-8220/13/1/393
http://www.ft.com/cms/s/0/55656cf2-dff4-11e2-bf9d-00144feab7de.html#axzz2iIdk82Be
http://www.freertos.org/
http://www.xilinx.com/publications/archives/xcell/Xcell78.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell87.pdf

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
[23]F. K. Jondral, “Software-Defined Radio - Basics and Evolution to Cognitive Radio”, EURASIP Journal on
Wireless Communications and Networking, Vo. 2005, Issue 3, August 2005, pp. 275-283.

[24]K. Khan, “FPGAs Help Drive Innovation in Complex Medical Systems”, Medical Electronics Design website,
April 2012.
Available: http://www.medicalelectronicsdesign.com/article/fpgas-help-drive-innovation-complex-
medical-systems

[25]C. Kohn, “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All Programmable SoC
Devices”, Xilinx Application Note, XAPP1159, v1.0, January 2013.
Available: http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-
hw-accelerator-zynq-7000.pdf

[26]Y. Lin, “Using Xilinx Devices to Solve Challenges in Industrial Applications”, Xilinx White Paper, WP410,
v2.0, October 2012.

[27]MathWorks, Inc., “Image and Video Processing” webpage.
Available: http://www.mathworks.com/image-video-processing/

[28]Mike Mitchell, “Zynq for Video Applications”, Xilinx presentation, 2012.
Available: http://www.xilinx.com/Attachment/52101/video_opps_rv3.pdf

[29]Joe Mitola, “The Software Radio Architecture”, IEEE Communications Magazine, May 1995, pp. 26 - 38.

[30]Moving Pictures Experts Group website, “MPEG-4” webpage.
Available: http://mpeg.chiariglione.org/standards/mpeg-4

[31]S. Neuendorffer, T. Li and D. Wang, “Accelerating OpenCV Applications with Zynq-7000 All
Programmable SoC using Vivado HLS Video Libraries”, Xilinx Application Note, XAPP1167, v2.0, August
2013.
Available: http://www.xilinx.com/support/documentation/application_notes/xapp1167.pdf

[32]Nokia Research Center, “NRC Presents Cognitive Radio” webpage.
Available: https://research.nokia.com/page/9401

[33]OECD, “Building Blocks for Smart Networks”, OECD Digital Economy Papers, No. 215, OECD Publishing,
2013.
Available: http://dx.doi.org/10.1787/5k4dkhvnzv35-en

[34]OpenCV website,
Available: http://opencv.org/

[35]Phenox Lab, “Phenox” webpage.
Available: http://phenoxlab.com/?page_id=296

[36]Red Pitaya website.
Available: http://redpitaya.com/

[37]M. Russell and S. Fischaber, “OpenCV Based Road Sign Recognition on Zynq”, Proceedings of the 11th
International Conference on Industrial Informatics, Bochum, Germany, July 2013, pp. 596 - 601.
130

https://research.nokia.com/page/9401
http://mpeg.chiariglione.org/standards/mpeg-4
http://redpitaya.com/
http://opencv.org/
http://www.mathworks.com/image-video-processing/
http://www.xilinx.com/Attachment/52101/video_opps_rv3.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1167.pdf

http://dx.doi.org/10.1787/5k4dkhvnzv35-en

http://www.medicalelectronicsdesign.com/article/fpgas-help-drive-innovation-complex-medical-systems
http://www.medicalelectronicsdesign.com/article/fpgas-help-drive-innovation-complex-medical-systems
http://phenoxlab.com/?page_id=296

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
[38]M. Santarini, “Xilinx FPGAs to Power Next-Generation Networked Battlefield”, Xcell Journal, Fourth
Quarter 2009, pp. 8 - 14.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell69.pdf

[39]M. Santarini, “Xilinx’s New SDNet Environment Enables ‘Softly’ Defined Networks”, Xcell Journal, Second
Quarter 2014, pp. 8 - 13.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell87.pdf

[40]J. Shankleman, “Public Transport Gets Smart”, The Guardian, 9th January, 2013.
Available: http://www.theguardian.com/public-leaders-network/2013/jan/09/centro-public-transport-
travel-systems

[41]A. Shukla et al, “Cognitive Radio Technology: A Study for Ofcom - Volume 1”, QinetiQ Ltd. consultancy
report, February 2007.
Available: http://stakeholders.ofcom.org.uk/binaries/research/technology-research/cograd_main.pdf

[42]D. Snoonian, “Smart Buildings”, IEEE Spectrum, August 2003, pp. 18 - 23.

[43]E. Strickland, “Cisco Bets on South Korean Smart City”, IEEE Spectrum, August 2011, pp. 11 - 12.

[44]P. Sundararajan, “High Performance Computing Using FPGAs”, Xilinx White Paper, WP375, v1.0,
September 2010.

[45]P. D. Sutton et al, “Iris: An Architecture for Cognitive Radio Networking Testbeds”, IEEE Communications
Magazine, September 2010, pp. 114 - 122.

[46]Teradeep webpage:
http://www.teradeep.com/

[47]J.A. Throop, D. J. Aneshansley, W. C. Anger, and D. L. Peterson, “Quality evaluation of apples based on
surface defects: development of an automated inspection system”, Postharvest Biology and Technology, Vol.
36, Issue 3, June 2005, pp. 281-290.

[48]U. S. Energy Information Administration, “Electricity Use by Machine Drives Varies Significantly by
Manufacturing Industry”, October 2013,
Available: http://www.eia.gov/todayinenergy/detail.cfm?id=13431

[49]J. van de Belt, P. D. Sutton, and L. E. Doyle, “Accelerating Software Radio: Iris on the Zynq SoC”,
Proceedings of the IFIP/IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC),
October 2013, pp. 294 - 295.

[50]G. Velez et al, “A Reconfigurable Embedded Vision System for Advanced Driver Assistance”, Journal of Real
Time Image Processing, Springer, March 2014.

[51]N. Walravens and P. Ballon, “Platform Business Models for Smart Cities: From Control and Value to
Governance and Public Value”, IEEE Communications Magazine, June 2013, pp. 72 - 79.

[52]B. Wang and K. J. R. Liu, “Advances in Cognitive Radio Networks: A Survey”, IEEE Journal of Selected
Topics in Signal Processing, Vol. 5, No. 1, February 2011, pp. 5 - 23.

[53]J. Wang, M. Ghosh, and K. Challapali, “Emerging Cognitive Radio Applications: A Survey”, IEEE
Communications Magazine, March 2011, pp. 74 - 81.
131

http://www.theguardian.com/public-leaders-network/2013/jan/09/centro-public-transport-travel-systems
http://www.theguardian.com/public-leaders-network/2013/jan/09/centro-public-transport-travel-systems
http://stakeholders.ofcom.org.uk/binaries/research/technology-research/cograd_main.pdf
http://www.teradeep.com/
http://www.xilinx.com/publications/archives/xcell/Xcell69.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell87.pdf
http://www.eia.gov/todayinenergy/detail.cfm?id=13431

CHAPTER 5: Applications and Opportunities (“What can I do with it?”)
[54]S. Weston et al, “FPGAs Speed the Computation of Complex Credit Derivatives”, Xcell Journal, First
Quarter 2011, pp. 18 - 25.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell74.pdf

[55]Wireless Innovation Forum, “What is Software Defined Radio?” webpage,
Available: http://www.wirelessinnovation.org/introduction_to_sdr

[56]xG Technology, “xG Technology Ships World’s First Comprehensive Cognitive Radio System to Walnut
Hill Telephone Company”, press release, 16th October, 2013.
Available: http://www.xgtechnology.com/2013-Press-Releases/xg-technology-ships-worlds-first-
comprehensive-cognitive-radio-system-to-walnut-hill-telephone-company.html

[57]Xilinx, Inc., “A Generation Ahead: Smarter Networks”, Backgrounder, 2013.
Available: http://www.xilinx.com/publications/prod_mktg/smarter-networks-backgrounder.pdf

[58]Xilinx, Inc., “Defense Grade Zynq-7000Q AP SoCs” webpage.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000q.html

[59]Xilinx, Inc., “Xilinx Alliance Program” webpage.
Available: http://www.xilinx.com/alliance/index.htm

[60]Xilinx Inc., “Xilinx’s Zynq-7000 All Programmable SoCs Enable Mobilicom’s Advanced Peer-to-Peer
Software-Defined Radios”, press release, 16th July 2013.
Available: http://press.xilinx.com/2013-07-16-Xilinxs-Zynq-7000-All-Programmable-SoCs-Enable-
Mobilicoms-Advanced-Peer-to-Peer-Software-Defined-Radios

[61]Xilinx, Inc., “Zynq 7000 AP SoC Ecosystem” webpage.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm

[62]C. Zammariello and A. Lorelli, “Towards SDR Standardisation for Military Applications”, European Defence
Agency news article, January 2012.
Available: http://www.eda.europa.eu/info-hub/news/12-01-11/
Towards_SDR_standardisation_for_military_applications
132

http://www.wirelessinnovation.org/introduction_to_sdr
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm
http://www.xilinx.com/alliance/index.htm
http://www.xgtechnology.com/2013-Press-Releases/xg-technology-ships-worlds-first-comprehensive-cognitive-radio-system-to-walnut-hill-telephone-company.html
http://www.xgtechnology.com/2013-Press-Releases/xg-technology-ships-worlds-first-comprehensive-cognitive-radio-system-to-walnut-hill-telephone-company.html
http://www.xilinx.com/publications/prod_mktg/smarter-networks-backgrounder.pdf
http://press.xilinx.com/2013-07-16-Xilinxs-Zynq-7000-All-Programmable-SoCs-Enable-Mobilicoms-Advanced-Peer-to-Peer-Software-Defined-Radios
http://press.xilinx.com/2013-07-16-Xilinxs-Zynq-7000-All-Programmable-SoCs-Enable-Mobilicoms-Advanced-Peer-to-Peer-Software-Defined-Radios
http://www.eda.europa.eu/info-hub/news/12-01-11/Towards_SDR_standardisation_for_military_applications
http://www.eda.europa.eu/info-hub/news/12-01-11/Towards_SDR_standardisation_for_military_applications
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000q.html
http://www.xilinx.com/publications/archives/xcell/Xcell74.pdf

6

The ZedBoard

ow that we have addressed some of the fundamental questions relating to the Zynq
platform, it is appropriate to consider one of the most popular development boards for
working with Zynq — the ZedBoard. To explain the name, ‘Zed’ stands for Zynq Evaluation
and Development. The ZedBoard is just one of the development and evaluation boards
available at the time of writing. It is priced at a suitable level for students and enthusiasts,
and it forms the focus of an online community of ZedBoard users.

In this chapter, the ZedBoard architecture and features will be introduced, together with
some basic information about getting started, and the support integrated into the Xilinx
design tools for ZedBoard. Currently available resources for creating ZedBoard designs,
including tutorials, videos and support, will also be covered, with a special mention for the
ZedBoard online community.

6.1. Introducing Zed

The ZedBoard is a low-cost, community-based board which features a XC7Z020 Zynq
device. It is a joint venture between Xilinx, Avnet (the distributor), and Digilent (the board
manufacturer).

Although suitable as a development platform for industry, the ZedBoard is also targeted
at students, academics, and hobbyist users, with specific materials to cater for new Zynq
users, and addressing the learning curve of beginners. The community aspect derives from
a website run by Avnet that is dedicated to supporting users (ZedBoard.org), which will be
covered in detail in Section 6.7.

N

133

CHAPTER 6: The ZedBoard
6.2. ZedBoard System Architecture

As mentioned in the introductory comments, the ZedBoard features a ZC7Z020 Zynq
device. This is one of the smaller devices in the Zynq-7000 range, and it is based on the
Artix-7 logic fabric, with a capacity of 13,300 logic slices, 220 DSP48E1s, and 140
BlockRAMs. The device also contains an XADC hard IP block, although it does not feature
high-speed transceivers or PCIExpress blocks.

There are a number of peripheral interfaces on the ZedBoard:

• GPIO: in total, 9 x LEDs, 8 x switches, 7 x push buttons

• Audio codec (Analog Devices ADAU1761, supporting line in, line out, microphone
(in), and headphone (out))

• Video (HDMI)

• Video (VGA)

• Organic Light Emitting Diode (OLED) display

• Pmod interfaces (x 5)

• Ethernet

• USB-OTG (peripherals)

• USB-JTAG (programming)

• USB-UART (communication)

• SD card slot (located on the underside of the board)

• FMC interface

• XADC header

• Xilinx JTAG header

Additionally, the Zynq device interfaces to a 256Mbit flash memory and 512MB DDR3
memory, both of which are found on the board. There are two oscillator clock sources, one
at 100MHz, and the other at 33.3333MHz.

The features residing on the front of the ZedBoard are highlighted in Figure 6.1.
134

CHAPTER 6: The ZedBoard
Figure 6.1: ZedBoard layout and interfaces (front)

a

b
c d e f

g

h

i

j k

n

m

o

q

p

r

s

t u

l

 Xilinx JTAG connector

 Power input and switch

 USB-JTAG (programming)

 Audio ports

 Ethernet port

 HDMI port (output)

 VGA port

 XADC header port

 Configuration jumpers

 FMC connector

 SD card (underside)

 User push buttons

 LEDs

 Switches

 OLED display

 Prog & reset push buttons

 5 x Pmod connector ports

 USB-OTG peripheral port

 USB-UART port

 DDR3 memory

 Zynq device (+ heatsink)

a
b
c
d
e
f
g

h
i
j
k
l
m
n

o
p
q
r
s
t
u

135

CHAPTER 6: The ZedBoard
6.3. The Design Flow for ZedBoard

The design flow for the ZedBoard is as described in Chapter 3, with the additional
benefit of specific support for the ZedBoard within the tool flow, and this can be exploited
to streamline the design process.

When creating a project in Vivado, the user is prompted to specify the intended target
for the design. At this point, the target part could be specified as the xc7z020clg484-1 (i.e.
the Zynq device on the ZedBoard), but notably there is also an option to select a target
board. Here, choosing the ZedBoard Zynq Evaluation and Development Kit means that,
in addition to correctly targeting the appropriate Zynq device, the design tools have
knowledge of the specific facilities and peripheral connections available on the ZedBoard
(for example, the numbers of LEDs, switches and buttons which comprise the GPIO
interface).

This selection stage is confirmed in Figure 6.2. At the time of writing, there are two
revisions of the ZedBoard (‘c’ and ‘d’), and you should consult the documentation accom-
panying your board to check which applies. A number of other board targets are available.
Likewise if using one of those (e.g. the ZC702 or ZC706 Zynq evaluation boards), this can
be specified to ensure specific support for the target board during the design process.

Figure 6.2: The selection of the ZedBoard as the target for a Vivado project

choose Boards
here to see the
selection...

select the ZedBoard
(choose the ‘Board
Rev’ for you board)
136

CHAPTER 6: The ZedBoard
6.4. Getting Started with the ZedBoard

This section provides a brief review of the ZedBoard kit, and the initial steps required to
complete the hardware setup of the board.

6.4.1. What’s in the Box?

When you open the box for the first time, you will find a number of items inside, in
addition to the ZedBoard itself. These are helpfully demonstrated in a video produced by
Avnet and posted on the ZedBoard.org website [3]. The same video points out the different
features of the ZedBoard, as were reviewed in Figure 6.1, and confirms the steps required to
run the out-of-the-box design.

To confirm the contents of the ZedBoard box, you should find the following items
inside:

• The ZedBoard, packaged in an anti-static bag

• A DVD of software design tools

• A power adapter with attachments for US and EU socket types

• A USB-A to micro-USB-B cable

• A micro-USB-B to USB-A female adapter cable

• A 4GB SD card

• A leaflet with getting started information [7]

It is worth bearing in mind that those not living in an area where US or EU sockets are
used will additionally need to source a conversion adapter for their local socket type. For
instance, those based in the UK require a US-to-UK or EU-to-UK adapter.

A common requirement, especially for early-stage tutorials that you might follow, is to
interact with the board via the UART interface. This will require a second USB-A to micro-
USB-B connection (note that there is only one such cable provided, so a second may need
to be sourced). Depending on your intended usage of the ZedBoard’s peripherals, cables for
audio, video, ethernet, etc. might also be needed.

6.4.2. Hardware Setup

The ZedBoard must be connected to a power supply and, in the default configuration, to
the host PC for JTAG programming over USB (i.e. the USB-A to micro-USB-B
137

CHAPTER 6: The ZedBoard
connection). An additional connection should be made if intending to use the UART to
facilitate simple board-PC communication using the Terminal application. The locations of
these two connectors on the ZedBoard are shown in Figure 6.3. Note that there is also a
third micro-USB port which is reserved for connecting USB peripherals, if used (this can
be seen at the bottom of the photograph).

It is important to note that the correct device drivers must be installed in order to use the
USB-UART connection. These can be sourced from Cypress, and full details of the instal-
lation process can be found in [2], including links to download the relevant driver files.

6.4.3. Programming the ZedBoard

The ZedBoard can be programmed in four different ways. These are:

• USB-JTAG — This is the default and most straightforward method of programming
the ZedBoard, given that it can be done directly over the USB-micro-USB cable
supplied in the ZedBoard kit.

power
USB-JTAG
(programming,

 host PC)

USB-UART
(host PC comms)

USB-OTG
(peripherals)

Figure 6.3: Top left corner of ZedBoard, clarifying power and USB connectors
138

CHAPTER 6: The ZedBoard
• Traditional JTAG — A Xilinx JTAG connector is available on the board and may be
used in place of the USB-JTAG connection, if desired. This will require a different
type of cable than is included in the ZedBoard kit: a Xilinx Platform USB cable [11],
or a Digilent USB-JTAG programming cable [10].

• Quad-SPI flash memory — The flash memory on the board is non-volatile and
therefore can be used to store configuration data which persists when the board is
powered off. Using this method removes the requirement for a wired connection to
program the Zynq device.

• SD card — There is an SD slot on the underside of the ZedBoard. This facility can be
used to program the Zynq with files stored on the SD card, thus requiring no wired
connections for programming. This method is featured in the ZedBoard Getting
Started Guide [6].

Notably, the JTAG methods are ideal for the development phase, when it is convenient to
establish a USB / JTAG connection between the development PC and the ZedBoard. The
other two methods are more portable, and ultimately more representative of the type of
programming method which would be used in the field. It is also significant that JTAG is a
non-secure mechanism, while the other methods are secure; this is another factor in favour
of the flash and SD-based configuration methods when outside the lab environment.
Booting will be discussed in detail in Chapter 24, in the context of Linux-based systems.

The ZedBoard user specifies the method of booting / programming via a set of jumper
pins, which are positioned above the Digilent logo, as clarified in Figure 6.4. Of the five
jumpers in the group, the central three are used to define the source for programming the
board (JTAG, flash memory, or SD card), the jumper on the far right controls the JTAG
mode, and the jumper on the far left determines whether the internal PLL is used.

These last two options require further clarification. The JTAG mode refers to the
method of debugging using JTAG; this can either be cascaded, in which case a single JTAG
connection is used to interface to the debug access ports in both the PS and PL, or
independent, wherein the debug access ports in the PS and PL are accessed separately,
requiring one cable for each. The PLL mode determines whether the process of configuring
the device includes a phase of waiting for the PLL to lock, before starting the boot process.
The alternative is to bypass the PLL, but in this case, booting takes longer.

Extensive further information about configuration options and processes is available in
the Zynq-7000 Technical Reference Manual [13].

Table 6.1 specifies permitted jumper settings, and selected examples are also given in
Figure 6.5.
139

CHAPTER 6: The ZedBoard

Table 6.1: Configuration jumper settings on the ZedBoard [8]

MIO[6] MIO[5] MIO[4] MIO[3] MIO[2]

In Xilinx Technical
Reference Manual...

Boot_
Mode[4]

Boot_
Mode[0]

Boot_
Mode[2]

Boot_
Mode[1]

Boot_
Mode[3]

JTAG Mode

Cascaded JTAGa

a. Denotes default setting.

- - - - 0

Independent JTAG - - - - 1

Boot Device

JTAG - 0 0 0 -

Quad-SPI (flash) - 1 0 0 -

SD Carda - 1 1 0 -

PLL Mode

PLL Useda 0 - - - -

PLL Bypassed 1 - - - -

Figure 6.4: The set of jumpers determining configuration options
140

CHAPTER 6: The ZedBoard
Figure 6.5: Jumper settings for all ZedBoard configuration options

M
IO

[6
]

M
IO

[5
]

M
IO

[4
]

M
IO

[3
]

M
IO

[2
]

Cascaded JTAG (default)

Independent JTAG

JTAG (default)

Quad-SPI Flash Memory

SD Card

PLL Used (default)

PLL Bypassed

Boot Device

JTAG Mode

PLL Mode

3V3

SIG

GND

3V3

SIG

GND

3V3

SIG

GND

3V3

SIG

GND

3V3

SIG

GND

3V3

SIG

GND

3V3

SIG

GND

don’t carerelevantKey:
141

CHAPTER 6: The ZedBoard
6.5. MicroZed

The MicroZed is a Zynq-based development board following on from the success of
ZedBoard. It is a smaller board with fewer peripherals, and cheaper to purchase.

The default configuration of the MicroZed features a ZC7Z010 Zynq device (a smaller
one than on the ZedBoard). The MicroZed can be used either as a standalone development
board, or placed into a carrier card as a module. As compared to standalone operation,
using the MicroZed as a module hosted by a carrier board has the advantage that
additional input / output functionality becomes available.

Although we are concerned primarily with the ZedBoard in this chapter, MicroZed and
its associated carrier card are both featured and supported on the www.ZedBoard.org
website.

6.6. Documentation, Tutorials and Support

Whether a new user, or one with prior experience of Zynq, it is probable that you will
need to refer to documentation for the ZedBoard at some stage. It is useful to highlight the
various sources of information and key documents, particularly from the perspective of
those with little prior knowledge in the area. This includes documentation about the
ZedBoard itself, as well as demonstrations and tutorials on working with the board, and
other sources of support. Apart from where specifically noted, all of the resources cited
below are available from the Documentation pages of the ZedBoard.org website:

 http://www.zedboard.org/support/documentation

Although it is considered useful to review the materials and support available on the
ZedBoard website, please bear in mind that these web resources are inevitably dynamic in
nature, and may change over time. In particular, it is expected that versions will change and
new materials will appear.

6.6.1. Documentation about the ZedBoard

In terms of documentation about the board itself, the primary source of information is
the ZedBoard Hardware User’s Guide [8], which reviews all of the functional aspects of the
ZedBoard, including clock and reset sources, power circuitry, configuration methods,
jumper settings, on-board memory, peripheral interfaces, pin voltages, and expansion
headers. ZedBoard Errata documents provide necessary updates to this information [4],
[5]. The Hardware User’s Guide is a very useful reference, especially when developing
designs featuring the peripherals on the board.
142

http://www.zedboard.org/support/documentation
http://www.ZedBoard.org

CHAPTER 6: The ZedBoard
Master constraints files are available, which provides the superset of input/output
connection assignments. Constraints are provided as both a UCF (*.ucf) file, for use in the
Xilinx ISE flow, and as an XDC (*.xdc) for the Vivado flow.

Another important document relates to the USB-UART connection, which requires
particular driver files to be downloaded and installed on the host PC. Guidance on this
process may be found in the Cypress CY7C64225 USB-to-UART Setup Guide [2].

Further board-related documentation available on www.ZedBoard.org includes
schematics, mechanical drawings, and the bill of materials. All of these documents are
located under the Support / Documentation section of the website [14].

6.6.2. Demonstrations and Tutorials

A number of demonstrations and tutorials are available to assist with getting started. To
highlight a few of these, the following may be particularly useful:

• The Getting Started Instructions card [7] — a short guide included in the kit to
confirm that the ZedBoard is operating correctly;

• The Overview of the ZedBoard Kit video [3] — confirmation of the contents of the
ZedBoard kit, with a demonstration of how to connect up the board and get started;

• The Getting Started Guide [6] — featuring a number of demonstrations of the
ZedBoard’s capabilities;

• The ZedBoard: Zynq-7000 AP SoC Concepts, Tools, and Techniques (CTT) guide
[12] — a useful set of hands on tutorials introducing both the PL and PS; and

Some guides may have accompanying sets of files, and may be specific to a particular
version of the Xilinx tools, so it is worth checking version compatibility before starting.

6.6.3. Online Courseware

There are several coursewares available on the ZedBoard.org website, all of which are
freely available to anyone who registers on the site. Additionally, members of the academic
community (academics, researchers and students) can obtain further resources via Xilinx
University Program. Academic materials will be covered in Chapter 7.

The primary training material on the ZedBoard.org website is the SpeedWay Training
produced by Avnet. At the time of writing, there are four courses available: Introduction to
Zynq, Implementing Linux on the Zynq-7000 SoC, Software Defined Radio on Zynq, and
Debugging ARM Processor Systems.
143

http://www.ZedBoard.org

CHAPTER 6: The ZedBoard
Another source of training, of an informal style, are the blogs posted by ZynqGeek, a
member of the ZedBoard.org community. These are generally focussed on particular
procedures (sometimes stimulated by posts in ZedBoard.org’s forum feature) and cover
such topics as a simple “Hello World” example, how to create and interface with a custom
peripheral in PL, and how to create a Linux kernel. The community aspect of ZedBoard.org
will be discussed further in Section 6.7.

6.6.4. Other ZedBoard Resources and Support

Often it is instructive to investigate the designs of others, and the various Reference
Designs posted on ZedBoard.org provide a useful resource. These are found under Support
/ Reference Designs, and constitute a set of standard projects developed and maintained by
Avnet and other ZedBoard partners. The projects include a Quadrature Phase Shift Keying
(QPSK) digital up and down converter demo, a Zynq-based video design based on HDMI,
and running desktop Linux on the Zynq. Some of these require additional modules such as
Pmods or FMC cards, which are not part of the basic ZedBoard kit.

6.7. ZedBoard.org Community

The community aspect of the ZedBoard, which is hosted by the www.ZedBoard.org
website, differentiates it from other development boards, and creates an environment
where ZedBoard users can access resources, exchange ideas, and help each other to
troubleshoot problems. It is useful to briefly point out the highlights of this website from
the community perspective; certain other aspects, particularly documentation, have
already been covered earlier in the chapter.

6.7.1. Community Projects

Augmenting the set of reference designs, there is also a page for community projects,
which are designs contributed by members of the ZedBoard.org website. These projects
can either be completed designs that the developer(s) would like to share, or incomplete
systems, regarding which they would like to seek help, or encourage community partici-
pation. Any member of the community can request to post a community project, which
involves submitting a short application for subsequent review and approval.

The topics of projects contributed to date include outputting to the OLED display,
creating an electrical motor controller, and using the AMS101 add-on module for mixed
signal applications. The projects cover a range of subjects and start with simple systems.
Some of these projects may require additional modules, but the majority require only the
integrated facilities of the ZedBoard.
144

http://www.zedboard.org

CHAPTER 6: The ZedBoard
6.7.2. Blogs

Another useful part of the ZedBoard.org community are the links to blogs by Zynq
enthusiasts. At the time of writing, there are two particularly active blogs, ZynqGeek and
Zynq from Scratch. The individual blog posts are usually based on practical issues, and take
an enthusiastic and accessible whirl through some aspect of Zynq-based design, whether
fundamentals, hardware design, or software development. Many of these follow a helpful,
tutorial style. Blog posts are often stimulated by others’ questions or comments, which adds
to the community feel.

6.7.3. Support Forums

With over 3,000 ZedBoards sold to the general community in the first year after its
release (in July 2012), and a similar number to the academic market [9], the platform has a
strong and growing user base. This translates into a healthy ZedBoard community, which is
apparent from the forums. These provide an opportunity for ZedBoard users to ask or
respond to questions, providing an encouraging environment for beginners (in particular)
to seek help. Forum facilities are provided in both English and Chinese languages.

ZedBoard users can also post questions and responses on the appropriate Zynq-related
forums on the Xilinx website, for access to a wider community of potential respondents:

http://forums.xilinx.com/

6.8. Chapter Review

This chapter has introduced the ZedBoard, a low-cost evaluation and development
board featuring the Zynq XC7Z020 device. The important features of the ZedBoard have
been reviewed, and in particular the various physical interfaces of the board have been
identified and their purposes explained. We have also seen that the design tools include
specific support for the ZedBoard (as well as other development boards) which can help to
expedite the design process.

The ZedBoard is partly aimed at encouraging use of Zynq within the academic and
enthusiast communities, and as such there are a variety of resources available which cater
especially for those starting out in Zynq design. Over the preceding pages, we have
confirmed the contents of the ZedBoard kit, explained how it can be set up, and summa-
rised the key sources of information for getting started with the ZedBoard. Lastly, we have
discussed the community aspect of the ZedBoard, noting in particular the community
projects, as well as the forums, which are a ‘live’ resource for discussing technical problems
and exchanging ideas with others working on the same platform.
145

http://forums.xilinx.com/

CHAPTER 6: The ZedBoard
ZedBoard caters for a variety of users, including the academic community in particular.
In the next chapter, we will continue this theme by focussing on the use of both Zynq and
ZedBoard in education, research, and training.

6.9. References

NOTE: All URLs last accessed June 2014.

[1] Analog Devices, “Analog Devices FMC - Communications Board: Analog Connectivity with Xilinx Zynq”,
2012.
Available:
 http://www.analog.com/static/imported-files/overviews/FMC-Communications_Product_Highlight.pdf

[2] Avnet, “Cypress CY7C64225 USB-to_UART Setup Guide”, version 1.3, January 2014.

[3] Avnet, “Overview of the ZedBoard Kit”, video.
Available: http://www.zedboard.org/videos/overview-zedboard-kit

[4] Avnet, “ZedBoard Rev C.1 Errata”, revision 1.4, January 2014.

[5] Avnet, “ZedBoard Rev D.2 Errata”, revision 1.1, January 2014.

[6] Avnet, “ZedBoard Getting Started Guide”, version 7.0, January 2014.

[7] Avnet, “ZedBoard Getting Started Instructions”.

[8] Avnet, “ZedBoard (Zynq Evaluation and Development) Hardware User’s Guide”, version 2.2, January 2014.

[9] BusinessWire website, “Avnet Electronics Marketing Celebrates One Year of ZedBoard”, 23rd July, 2013.
Available: http://www.businesswire.com/news/home/20130723005579/en/Avnet-Electronics-Marketing-
Celebrates-Year-ZedBoard

[10]Digilent, Inc., “XUP USB-JTAG Programming Cable” webpage.
Available: http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,395,716&Prod=XUP-USB-JTAG

[11]Xilinx, Inc., “Platform Cable USB II” webpage.
Available: http://www.xilinx.com/products/boards-and-kits/HW-USB-II-G.htm

[12]Xilinx, Inc., “ZedBoard: Zynq-7000 AP SoC Concepts, Tools, and Techniques”, Vivado 13.2, July 2013.
Available: http://www.zedboard.org/support/design (requires login)

[13]Xilinx, Inc., “Zynq-7000 Technical Reference Manual”, UG585, version 1.7, February 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[14]ZedBoard.org “Documentation” webpage.
Available: http://www.zedboard.org/support/documentation
146

http://www.analog.com/static/imported-files/overviews/FMC-Communications_Product_Highlight.pdf
http://www.zedboard.org/support/documentation
http://www.zedboard.org/support/design
http://www.xilinx.com/products/boards-and-kits/HW-USB-II-G.htm
http://www.zedboard.org/videos/overview-zedboard-kit
http://www.businesswire.com/news/home/20130723005579/en/Avnet-Electronics-Marketing-Celebrates-Year-ZedBoard
http://www.businesswire.com/news/home/20130723005579/en/Avnet-Electronics-Marketing-Celebrates-Year-ZedBoard
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,395,716&Prod=XUP-USB-JTAG
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

7

Education, Research and

Training

his chapter will consider the possibilities and opportunities for Zynq in academic
research and teaching, as well as the training available to industry and the wider
community. We set this within the context of a growing interest in creating networked
embedded systems, and the engineering skills that will be required to meet current and
emerging technology challenges in this and other areas of SoC interest.

As part of our review of education, we will highlight the opportunities for conveying a
variety of aspects of SoC design through Zynq, and the potential to use Zynq as a common
platform for several related academic subjects. The extensibility of Zynq and related
academic development boards are shown to provide a very suitable platform for both
formal taught classes, and project based learning. Some examples of each will be provided.

In research terms, Zynq has widespread applicability, and therefore the potential for
academic research (particularly applications-led research), is wide and varied. We highlight
some papers already published, and mention further topics which are expected to be fertile
areas of interest and investigation.

The Xilinx University Program (XUP) will be introduced, and its role as a support
mechanism for universities in respect of both teaching and research described. Finally, we
end the chapter by reviewing sources of training particularly applicable for the industrial
and hobbyist communities.

T

147

CHAPTER 7: Education, Research and Training
7.1. Technology Trends and SoC Education

One of the major technology trends over recent years has been the dramatic increase in
internet connectivity. Whereas 10 years ago the primary source of internet connection was
via a PC, consumers now expect wireless data on their smartphones and tablets, not only
when at home or in the office, but also while mobile. Many households also make use of
TV-on-demand services, via internet-enabled televisions, set-top boxes and games
consoles, which allows them to watch their favourite programmes at any convenient time.
As a combined result of these and other technologies, aggregate internet traffic is on a steep
incline, and in fact global IP traffic is expected to surpass 1.0 zettabytes per year in 2015
[4].

As well as the growth in traffic, we are also witnessing an overall increase in the number
of internet-connected devices. In fact, as of approximately 2008/2009, the number of such
devices worldwide increased beyond that of the global population! [8]

The proliferation of connected devices is supported by Internet Protocol version 6
(IPv6), which supersedes IPv4 and removes the pressure on internet address space [3].
Partly due to this increased scope for connectedness, M2M has started to emerge, since the
early 2010’s, as a significant source of internet traffic. As described in Chapter 5, M2M
refers to a class of devices that can be connected to the internet to produce, consume, or
otherwise share data without the direct intervention of humans. M2M relates closely to the
concept of the IoT, a term which neatly encapsulates the need for autonomous machines to
communicate and network with each other independently [2].

These M2M terminals can also be considered embedded systems, i.e. systems which are
not general purpose computers, but which are designed and optimised to undertake a
specific function. For instance, M2M might include sensors and actuator nodes distributed
through an industrial process to monitor and adjust manufacturing conditions, with the
aim of increasing productivity, minimising waste, etc. As discussed in Chapter 5, appli-
cation areas of IoT include smart cities, a loose concept covering several aspects of city life;
smart grids, electrical power distribution networks that can dynamically sense and adapt,
in order to maximise power delivery performance and self-protect against faults; and the
smart home, wherein sensors and actuators manage the light levels, temperature, security
and entertainment systems in an environmentally and economically sensitive way.

The growth of M2M-style internet traffic is projected to continue over the next few
years, and even to outstrip the growth in more conventional traffic types [4]. A 2013 report
projected that there will be 212 billion devices connected to the internet by 2020, of which
around 30 billion will be autonomous [14]. The implication is that more internet-
connected embedded systems will be required for the realisation of smart grids, smart
148

CHAPTER 7: Education, Research and Training
cities, smart buildings, smart health (and several other smarts!), asset tracking, ‘big data’,
the industrial internet, and many applications yet to emerge. The potential opportunities
for innovation, commercial success and societal benefits in this area are huge. The impor-
tance of the SoC to these applications is clear, given the demands for complete autonomous
systems to be implemented at modest cost, with low power consumption, and often in
physically compact form.

This aspect of technology advance is significant when contemplating the evolution of
curricula in electronics and communications. It will be important for engineering institu-
tions to educate young engineers with the skills and mindset to develop the networked
embedded systems required for the next-generation internet.

Of course, the IoT is not the only factor driving SoC. As reviewed in Chapter 5, applica-
tions are many and varied, including advanced communications and radar systems,
broadcast technology, machine vision, automotive and aerospace, and considerably more.
Collectively, these technology areas will stimulate new commercial opportunities, and new
problems for the engineers of the future to solve.

7.2. University Teaching with Zynq

The majority of this section focuses on the development of courses in electronics and
computing, and identifies educational themes which may be demonstrated, supported or
enhanced through the use of Zynq All Programmable SoC and its associated design flow.
Before doing so, it is useful to first review the use of Xilinx development tools and boards
in the academic environment, from a general perspective.

7.2.1. Teaching with Xilinx Tools and Boards

The Vivado Design Suite can be used in university teaching to equip students with
industry-relevant experience of building SoC designs using high-level design tools. The
constraints of time-limited lab sessions may be different to industrial environments, but
the increases in productivity that apply to commercial development can be similarly
leveraged in academia, thus enabling students to achieve more during their limited lab
times. In the past, students undertaking FPGA design using VHDL or Verilog could not be
expected to develop a large system or complex IP block, due to the limitations of their
timetables, and the adoption of a low-level, HDL-based design methodology.

With Zynq and the system-level design methods possible with Vivado, it is feasible for
students to build more sophisticated SoC designs, containing both custom hardware and
software, within the time constraints of a university module or project.
149

CHAPTER 7: Education, Research and Training
From a ‘hands-on’ practical perspective, Zynq academic development boards feature a
selection of on-board peripherals, providing everything that is needed for embedded
systems development. These range from simple I/O, to Terminal communication, audio,
video, and data interfaces. Boards can also be further extended with add-on modules.
Students engagement is typically enhanced by activities which interact with the real world
using facilities like these. One of the implicit benefits of adopting Zynq is that the devel-
opment boards can actually be used as a common platform for several different teaching
areas, spanning electronic engineering to computer science, allowing university depart-
ments to rationalise existing hardware platforms. Where students are studying a number of
different subjects, using the same platform for practical work reduces the learning curve of
gaining familiarity with the development tools and boards, thus increasing the time
available for subject-specific practical work and projects.

We note in particular that Zynq can actually provide a foundation for several related
academic subjects, and support practical examples in others, as depicted in Figure 7.1 and
discussed later in this section.

7.2.2. Digital Design and FPGA Teaching

As described in earlier chapters, the PL part of the Zynq device is equivalent to FPGA
fabric, and can be used in isolation of the PS. This allows the Zynq to be used like a
standard FPGA, and thus to support classes in VHDL / Verilog, digital design, and FPGA
technology, or for project-based learning in areas such as communications, control
systems, signal processing, and robotics.

7.2.3. Computer Science

The dual-core ARM processor in the Zynq can be used in isolation of the FPGA fabric,
thus appearing to the user as a standard ARM processor. Hence, Zynq can be used as a
practical platform for typical Computer Science teaching, including embedded systems,
software design, operating systems, and more challenging applications including homoge-
neous dual-core Symmetric Multi-Processing (SMP), and Asymmetric Multiprocessing
(AMP) — see Chapter 21 for more information on this last topic.

7.2.4. Embedded Systems and SoC Design

Teaching of embedded systems design involves educating students in the concepts,
features and operation of embedded systems, and also giving them some practical exposure
to embedded systems design.
150

CHAPTER 7: Education, Research and Training
Students can learn about general embedded systems concepts such as buses, interrupts,
processors, peripherals, and memory access, as all of these can be covered using the Zynq
platform. It also significant that, due to the composition of Zynq, students gain experience
both of the popular ARM processor architecture, and also of FPGA programmable logic.

7.2.5. Algorithm Implementation (e.g. Signal, Image, and Video Processing)

Another candidate learning mode is to provide students with a prepared system, which
has one or more ‘black boxes’ into which they can insert their own custom functionality.
This gives students an the opportunity to concentrate on one specific aspect of a system,
and gain direct feedback on the impact of that subsystem when integrated into a processing
chain.

FPGA

Computer

Science

Algorithm

Implementation

Embedded

Systems

Design Reuse

Prototyping &

Projects

Robotics

System on Chip

Software

Development

Computer

Architecture

Operating

Systems

Image

Processing

Video

Processing

Signal

Processing

Coding and

Cryptography

Digital Design

VHDL / Verilog

FPGA

Technology

Figure 7.1: Academic subjects to which Zynq is relevant
151

CHAPTER 7: Education, Research and Training
 Examples of this ‘black box’ approach could include both software and hardware
functionality. For instance, a specific filtering stage could be inserted into an SDR, an edge
detection algorithm as part of an image processing application, or a software algorithm
could be developed to identify particular patterns in a stream of captured sensor data. A
good illustrative example would be a real-time video system, which streams data from a
camera onto the Zynq device for processing, and then to a video display. Students could be
asked to implement an image filtering or feature detection algorithm, and would have the
opportunity to gain direct visual feedback on the results. As desired, different design
methods and tools could be used to implement algorithm functionality, including HDL,
System Generator for DSP, or HLS if targeting the PL part of the Zynq, or software if imple-
menting the functionality using the processor.

7.2.6. Design Reuse

The experience of adding or changing functionality in the manner described in Section
7.2.5 can also be extended, in order to highlight another industry-relevant aspect of
embedded systems design: design reuse. In a classroom setting, students (or groups of
students) could each develop a different ‘black box’ subsystem, or interchangeable varia-
tions of the same ‘black box’ using a chosen IP creation method such as System Generator
for DSP, HDL, or HLS from C-level code. They could then be asked to exchange designs
with classmates using the industry standard IP-XACT format, and through this, either to
collectively form an entire system, or to establish the set of functionality necessary to
complete individual designs. This would provide an ideal first-hand experience of design
reuse in a classroom setting. The point could even be strengthened if the classmates can, in
conjunction, realise a design that would have been impossible in the time frame without
sharing IP.

Figure 7.2 depicts this style of classroom-based design reuse project. Here, four groups
(A, B, C, and D) are tasked with developing a separate piece of IP, for implementation in
the PL. Each group must design, test and document their assigned IP block. In order to
create the complete system, groups are then required to adopt a design reuse model,
wherein they make their IP block available to the other groups, and in return can obtain
their IPs, such that all required blocks are available to all groups. Group A must then
develop the overall hardware system and write software to complete the design, and
likewise, the other groups can complete their own systems in the same way. Note that
groups of differing sizes could be accommodated relatively easily, by assigning the larger
groups with more complex IPs to develop.

In sharing developed IP, and attempting to reuse the work of others, students can also
gain a genuine appreciation of the real engineering importance of testing and documen-
152

CHAPTER 7: Education, Research and Training
tation. That is, not to satisfy tutors or gain marks! Rather, to ensure robust operation, and
to clearly convey the necessary technical details to other engineers reusing their designs.
The experience of being both a producer of IP, and a consumer of others’ IP, provides an
ideal opportunity to consider these vital aspects of the development process.

7.2.7. New and Emerging Design Methods

Zynq can also be used for teaching and research in new and emerging design methods,
languages and techniques, like HLS, OpenCV, and OpenCL.

HLS is the subject of dedicated discussion in Chapters 14 and 15.

OpenCV (Open source Computer Vision) is a free C/C++ library of functions for real-
time image processing [16]. OpenCV is available via a Berkeley Software Distribution

Custom software
(by Group A)

PS

PL

Group B Group A

Group D

Coproc. D
(obtained from

Group D)

Coproc. B
(obtained from

Group B)

Coproc. A
(created by

Group A)

Group C

Coproc. C
(obtained from

Group C)

Z
y
n
q

d
e
v
ic
e

Figure 7.2: Design reuse in the classroom setting (the perspective of Group A)
153

CHAPTER 7: Education, Research and Training
(BSD) open source license [17], meaning that it is free for both academic and commercial
use.

OpenCL (Open Computing Language) is an open standard that provides a framework
for running software across heterogeneous computing units [15]. A set of units could
comprise any combination of Central Processing Units (CPUs), DSPs, Graphics Processing
Units (GPUs), FPGAs, and other types of processing resource. OpenCL relies on a host
processor controlling the execution of other processing elements in the system, and
therefore Zynq is a particularly suitable platform for OpenCL: one of the ARM cores can
implement the host control, offloading functions to (i) custom processing units in the
FPGA fabric, and (ii) the second ARM core.

7.2.8. Sensing, Robotics, and Prototyping

The facilities of Zynq academic development boards include expansion connectors that
can be used to extend functionality with Pmod add-on modules and, in the case of the
ZedBoard, an FMC connector. A number of Pmod modules are available from the board
manufacturer and third parties [5], [12]. These include sensors (light, sound and temper-
ature sensors, proximity detectors, gyroscopes, accelerometers, etc.); actuators and data
converters (e.g. stepper motor drivers, DACs and ADCs); communications interfaces
(Bluetooth, GPS, WiFi etc.) and visual display outputs (LCD and OLED displays). Pmods
are also available for creating simple custom interfaces and test points, and for bread-
boarding.

Given all of these facilities, there is great scope to develop practical projects based
around Zynq development boards. For example, this might include sensing of ambient
light and temperature for smart buildings, or the construction of a robotic vehicle, perhaps
even including interaction with a mobile phone application via Bluetooth. As an example
of this type of application, the ‘ZRobot’, has been created by Xilinx University Program as a
teaching development platform, and is shown in Figure 7.3 [11]. Students can enhance and
extend the functionality of the robot by adding further sensors and actuators, or by
customising its behaviour via modification of software routines.

7.2.9. An Example Course

An interesting exemplar of Zynq-based teaching was presented by Professor Karl L.
Wang of Harvey Mudd College, Claremont, California, USA, in his paper “An Effective
Project-Based Embedded System Design Teaching Method”, co-authored by colleagues
from Digilent [20]. The paper reviews the content and structure of a newly developed
course, based around the ZedBoard as the class teaching platform. The 16-week class is
154

CHAPTER 7: Education, Research and Training
formed from a series of lectures and structured laboratories, followed by a group-based
project phase, in which the students build on their knowledge and skills to address a self-
defined problem. The groups appear to have chosen a variety of topics, including a pin-ball
game, music synthesiser, and a robot with collision avoidance sensing. The authors of the
paper reported a positive response to the teaching methods, and identified some areas for
future improvement.

7.3. Projects and Competitions

Student design contests are regularly run by Digilent, the manufacturer of the ZedBoard
and other academic development boards. These are open to students all over the world,
and are intended to stimulate innovative design ideas and projects based around Digilent
products (which includes FPGA, Zynq, and microcontroller boards). In the most recently
held design contest, at the time of writing (2013), students addressed problems such as

Figure 7.3: The ZRobot, based around a ZedBoard development platform

© Xilinx
155

CHAPTER 7: Education, Research and Training
shape recognition image processing, powerline communication, and the implementation of
cryptographic algorithms, leveraging the Zynq PL for hardware acceleration.

Xilinx University Program also occasionally organises design contests in regions around
the world, with the similar aim of motivating student participation and innovation [24].

7.4. Academic Research

Just as Zynq is relevant to a variety of related topics in the engineering curricula, it has
great potential for engineering and computing research. At the time of writing, Zynq is still
very ‘young’ and therefore the scope and diversity of innovation built upon Zynq are still to
fully emerge; however, it is useful to survey some of the research activities to date.

It may be expected that research around Zynq will be strongly application-driven, with
the areas identified in Chapter 5 providing stimulus; for example, image and video
processing, software defined radio, communications networks, etc. Even aside from these
key identified areas, Zynq holds wide appeal, and a survey of the papers published to date
could provide an early indication of the diversity we might come to expect.

Some of the highlights so far include:

• Optical flow accelerators — An application in image processing, optical flow is
concerned with the movement of features between successive video frames. In [13],
researchers report on the implementation of an optical flow algorithm using HLS
with OpenCV, and targeting a Zynq device. The benefits of HLS as a design method-
ology (to be further discussed in Chapter 14) were observed first hand in the context
of this project; for example, the ability to scan the design space for the most suitable
implementation. The stated outcomes indicate that the developed design achieved
performance comparable to a desktop processor, but while consuming only about
one seventh of the energy.

• Remote health / safety monitoring — A paper presenting the design and implemen-
tation of a system to monitor vulnerable individuals who may be susceptible to
falling and suffering injury [19]. Data is obtained from a medical sensor worn by the
patient, which collects movement data from a tri-axial accelerometer. The sensor
data is sparse and therefore requires reconstruction, which is achieved using a PL-
based accelerator implementing the Orthogonal Matching Pursuit (OMP)
algorithm. A further PL accelerator detects falls based on the reconstructed data,
while software routines are used to classify falls, and hence determine what action
should be taken.
156

CHAPTER 7: Education, Research and Training
• Image processing and embedded vision — As discussed in Chapter 5, Zynq is a very
suitable platform for image processing. The authors of [9] present a system, proto-
typed on a ZC702 board, which takes advantage of the ARM processor and PL to
support a software framework running on Linux, and image processing hardware
accelerators, respectively. The realised functionality includes image stabilisation,
contrast normalisation, and identification of moving targets. The paper reports on
the achieved resource costs and frame rates, and the extensibility of the system.

• ‘Evolvable’ hardware —As reviewed in Chapter 5, DPR is a technique that facilitates
the reprogramming of defined areas of an FPGA or Zynq PL, while the rest of the
device continues to operate unaffected. The implementation of DPR (and related
techniques for evolvable hardware) using ARM-based software control is a particu-
larly interesting area, and the authors of [6] and [7] report on such systems for
adaptable (or ‘evolvable’) image filtering. They report on significant performance
improvements specifically attributable to the Zynq architecture, and identify areas
for further investigation.

• Zynq hardware virtualisation — In [18], the subject of virtualising the Zynq
platform is addressed, with the aim of abstracting detail and facilitating more
dynamically adaptable use of the PL in particular. In other words, a scheme where
the PL is used not just to host static coprocessors, but to implement functionality
that adapts according to processing requirements. The authors assess the potential
for Zynq to support this mode of operation using a standard hypervisor application,
and demonstrate a framework for software and hardware virtualisation on Zynq.

• Gas identification — In [1], an SoC design based on Zynq is presented for the
identification of gases. Principal component analysis (a matrix-based method) is
used for machine learning and thereafter to classify gases. The paper reports that
Vivado HLS was successfully used for hardware acceleration of the computationally
parallel matrix operations, with directives used to optimise the implementation. The
results presented indicate that the Zynq solution was faster than a software-based
solution operating on a 64-bit Intel i7 processor.

• Biosensing — The problem of implementing a flexible biosensing platform for a
large number of channels is addressed in [10]. Such platforms are required to
support the acquisition of data from a large number of sensors (1000+), with subse-
quent FFT-based signal processing. The designed system is mapped to the Zynq
architecture (on the ZedBoard), with PL-based acceleration of the FFT operations. It
is reported that the system supports 8 times more sensors and a sampling frequency
157

CHAPTER 7: Education, Research and Training
1000 times higher than the previous generation platform. The reconfigurable nature
of the Zynq, and the flexibility to extend the design to accommodate more channels,
is also noted.

This is not an exhaustive list, and the breadth and depth of research around the Zynq
platform can only be expected to increase.

7.5. The Xilinx University Program (XUP)

Academia is supported directly by the XUP group within Xilinx. It is important to raise
awareness of the group, and the services it offers, within the academic community [23].

7.5.1. Introducing XUP

XUP provides support to universities around the world in the use of Xilinx tools and
technologies, and is managed and delivered by a dedicated global team. XUP was estab-
lished with the aim of enabling universities to use Xilinx technologies in their curricula and
research, and the team undertakes a variety of initiatives to both encourage and facilitate
academic activities. These are briefly reviewed over the remainder of this section.

7.5.2. Software Support and Licenses

Academic licenses of Vivado System Edition are available at low cost, to facilitate the use
of fully functional Xilinx software for classroom teaching and research. Qualifying institu-
tions can purchase licenses from a Xilinx distributor or educational partner in local regions
around the world, and in some cases XUP can also make licenses available for free, based
on a qualifying application to its donation programme.

Additionally, students can access Xilinx WebPACK for personal and home use, meaning
that coursework assignments can be completed outside of the lab, and that students can
work on their personal laptops if they prefer. WebPACK includes the core functionality of
the Vivado tools (FPGA design, software development, and simulation), and is directly
downloadable from the internet, free of charge [21].

The latest WebPACK version of the software typically provides support for most past
and some current generation Xilinx devices, with the exception of the newest, highest end,
and restricted devices in each product family. For example, at the time of writing, the
smaller Zynq devices in the family are supported by Vivado WebPACK 2013, but the largest
devices are not, and require the full version of Vivado. WebPACK is usually sufficient for
academic teaching, or for students and hobbyists to use at home, as most development
158

CHAPTER 7: Education, Research and Training
boards (especially those intended for teaching) tend to use smaller devices in a product
family.

Readers may wish to refer to Table 3.1 on page 49 for clarification of the features
available in WebPACK, and a comparison with the Design and System Editions of Vivado.

7.5.3. XUP Development and Teaching Boards

XUP works with partners to produce FPGA and Zynq development boards specifically
designed for academia. These tend to feature an array of I/O peripherals including LEDs,
switches and buttons, video in/out, audio in/out, ethernet, and expansion ports and pins.

At the time of writing, two XUP Zynq boards are available:

• ZYBO — A low cost board featuring a XC7Z010 Zynq device and a key set of I/O
peripherals. The ZyBo board is physically compact, and well suited to classroom
teaching. ZYBO was introduced in Section 3.6.5 on page 69, including a photograph
of the board in Figure 3.9.

• ZedBoard — An enhanced development board based around the XC7Z020 Zynq
device, and featuring an expanded set of peripherals. Suitable for classroom use, but
also for project work and more demanding applications.

XUP boards are supported by the manufacturer, and also by XUP directly, through the
provision of teaching and training material targeted to these boards. Members can access
teaching material for Zynq via the XUP website.

The ZedBoard in particular is suitable for research work, although certain topics of
investigation may demand larger devices or specific peripheral support, and thus prompt
the use of professional grade boards such as the ZC702 or ZC706. In addition to classroom
teaching and projects, ZYBO may be useful for certain types of research, for example
sensor and network applications.

7.5.4. XUP Workshops and Training Materials

Another of XUP’s functions is to develop in-house teaching and training material,
including specific support for Zynq, with the aim of educating professors, researchers and
teaching assistants in the effective use of Xilinx tools and devices. This material is made
available for academics to reuse for their own teaching, whether in its original form, or
integrated with other educational materials. Students can also download the material for
self directed learning.
159

CHAPTER 7: Education, Research and Training
These teaching materials form the basis of XUP Professor Workshops, which are run by
XUP staff and academic partners, and are scheduled regularly at locations around the
world. Workshops are free to attend, typically have a duration of 2 days, and are open to
professors, teaching staff and researchers. Several of the workshops currently offered focus
on Zynq.

7.5.5. Technical Support for Universities

As members of XUP, academics can access technical support, which may be useful in
developing courses or supporting projects. Students are asked to first approach their
professors and university support staff for technical help, and any unresolved issues can
thereafter be channelled to XUP by their professors, as appropriate.

7.5.6. Eligibility

All award-granting universities and some research institutes have institutional eligibility
for membership of XUP. Professors, teaching assistants and researchers working at an
eligible institution can then apply to become members, and this is achieved by first creating
an account on the Xilinx website, and then making an application for membership of XUP.

Once approved, members can access resources and technical support though XUP,
download training material, and register to attend Professor Workshops.

7.5.7. Getting in Touch with XUP

Further information about XUP is available via its website [23],

http://www.xilinx.com/university

including the most up-to-date versions of teaching material, current workshop schedules,
and contact details.

7.6. Training for Industry

Having discussed support for the academic community earlier in this chapter, it is also
important to review sources of training for industry.

7.6.1. Courses and Authorised Training Providers

Xilinx has a network of Authorised Training Providers (ATPs) around the world, who
deliver training on Xilinx FPGA technologies and design tools. The core portfolio of
courses is developed and designed by Xilinx, and includes courses covering the Zynq archi-
160

http://www.xilinx.com/university

CHAPTER 7: Education, Research and Training
tecture, the Vivado Design Suite, together with many other relevant topics. Training is
available in three primary modes: ‘live’ classroom-based courses, and both recorded and
live interactive online training.

7.6.2. Other Resources

In addition to formal classes, Xilinx also provides documentation, reference designs, and
tutorials, covering FPGA design concepts, use of the Xilinx development tools, and specific
application examples. Typically any purchased development board will be accompanied by
a set of tutorials, examples and reference designs applicable to the board, providing a basis
for the development of user designs. This form of ‘out of the box’ support is comparable
with that supplied along with university development boards, as detailed in Section 7.5.3.

7.6.3. Online Videos

Xilinx also provide a comprehensive set of QuickTake training videos, which demon-
strate design concepts and techniques, and highlight useful features of the Xilinx devel-
opment tools. The videos range from a few minutes to an hour in duration, and they
provide, as their name suggests, short and focused treatments of specific topics.

To give the reader a taste of the training offered by this mechanism, the QuickTake
videos are organised by subject, with topics current at the time of writing including: various
aspects of the Vivado design flow; applying design constraints; system-level design;
programming and debug; Vivado HLS; and several others. As well as being available via the
Xilinx website [22], the videos can also be viewed on YouTube [25].

7.7. Chapter Review

In this chapter, we have shown the applicability of Zynq to the engineering curriculum,
particularly in the context of networked embedded systems. It has been noted that Zynq
and its associated design tools and development boards can provide a basis for several
related topics, including FPGA design, computer science, and algorithm implementation,
as well as embedded systems design. We have also seen that Zynq is well suited to project-
based learning, with design contests providing an additional, external source of motivation.

The potential of Zynq as a platform for research was also considered, and some early
examples of research work undertaken based on Zynq were cited. It should be expected
that much further research will be emerge in time, as more projects come to completion,
are disseminated, and stimulate others.
161

CHAPTER 7: Education, Research and Training
XUP was introduced and its role as a support mechanism for university teaching and
research was explained, together with the types of support provided. Professors, teachers
and researchers at eligible institutions can become members of XUP to access specific
resources for academia.

Lastly, we reviewed sources of training for industry, including classes delivered by Xilinx
ATPs, and online video training. These are in addition to more standard sources of
support, such as documentation and tutorials available on the Xilinx website.

7.8. References

NOTE: All URLs last accessed June 2014.

[1] A. A. S. Ali, A. Amira, F. Bensaali and M. Benammar, “Hardware PCA for Gas Identification Systems Using
High Level Synthesis on the Zynq SoC”, Proceedings of the 20th IEEE Conferences on Electronics, Circuits
and Systems (ICECS), December 2013, pp. 707-710.

[2] L. Atzori, A. Iera, G. Morabito, “The Internet of Things: A Survey”, Computer Networks, Vol. 54, Issue 15,
October 2010, pp 2787-2805.

[3] H. Chao, H. Stuttgen, and D. Waddington, “IPv6: The Basis for the Next Generation Internet”, Guest
Editorial, IEEE Communications Magazine, January 2004, pp. 86-87.

[4] Cisco, Inc., “The Zettabyte Era - Trends and Analysis”, White Paper, May 2013.
Available: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/
VNI_Hyperconnectivity_WP.pdf

[5] Digilent, Inc., Sensors / Peripherals / Interfaces (PmodsTM) webpage,
Available: http://www.digilentinc.com/Products/Catalog.cfm?NavPath=2,401&Cat=9

[6] R. Dobai and L. Sekanina, “Image Filter Evolution on the Xilinx Zynq Platform”, Proceedings of the 2013
NASA/ESA Conference on Adaptable Hardware and Systems, Torino, Italy, June 2013, pp. 164 - 171.

[7] R. Dobai and L. Sekanina, “Towards Evolvable Systems Based on the Xilinx Zynq Platform”, Proceedings of
the 2013 IEEE International Conference on Evolvable Systems, Singapore, April 2013, pp. 89 - 95.

[8] D. Evans, “The Internet of Things: How the Next Evolution of the Internet is Changing Everything”, White
Paper, Cisco, April 2011.
Available: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

[9] E. Gudis et al, “An Embedded Vision Services Framework for Heterogeneous Accelerators”, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, Oregon, USA, June
2013, pp. 598 - 603.

[10] J. Leitão, J. Germano, N. Roma, R. Chaves and P. Tomás, “Scalable and High Throughput Biosensing
Platform”, Proceedings of the 23rd International Conference on Field Programmable Logic and Applications
(FPL), September 2013, pp. 1 - 6.
162

http://www.digilentinc.com/Products/Catalog.cfm?NavPath=2,401&Cat=9
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

CHAPTER 7: Education, Research and Training
[11]P. Lysaght, “All Programmable Technologies in Academia”, keynote presentation, International Symposium
on Applied Reconfigurable Computing, March 2013, Los Angeles, USA.
Available: http://www.isi.edu/events/arc2013/Xilinx-ARC2013-Invited-Lysaght.pdf

[12]Maxim Integrated, Pmod-Compatible Plug-in Peripheral Modules webpage.
Available: http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-
compatible-plug-in-peripheral-modules.html

[13]J. Monson, M. Wirthlin, and B. L. Hutchings, “Implementing High-Performance, Low-Power FPGA-Based
Optical Flow Accelerators in C”, Proceedings of the 24th IEEE International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), Washington DC, USA, June 2013, pp. 363-369.

[14]D. Nagel, “212 Billion Devices to Make Up ‘The Internet of Things’ by 2020”, THE Journal online, October
2013.
Available: http://thejournal.com/articles/2013/10/07/212-billion-devices-to-make-up-the-internet-of-
things-by-2020.aspx

[15]OpenCL website,
Available: http://www.khronos.org/opencl/

[16]OpenCV website,
Available: http://opencv.org/

[17]Open Source Initiative, “Open Sources Licenses By Category” webpage,
Available: http://opensource.org/licenses/category

[18]K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell, “Microkernel Hypervisor for a Hybrid ARM-
FPGA Platform”, Proceedings of the 24th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), Washington DC, USA, June 2013, pp. 219-226.

[19]H. Rabah, A. Amira, and A. Ahmad, “Design and Implementation of a Fall Detection System Using
Compressive Sensing and Shimmer Technology”, Proceedings of the 24th International Conference on
Microelectronics (ICM), pp. 1 - 4, December 2012.

[20]K. L. Wang, C. S. Cole, T. Wang, and J. Harris, “An Effective Project-Based Embedded System Design
Teaching Method”, Proceedings of the 120th American Society for Engineering Education (ASEE) Annual
Conference and Exposition, Atlanta, USA, June 2013.

[21]Xilinx, Inc., Vivado Design Suite Evaluation and WebPACK webpage,
Available: http://www.xilinx.com/products/design_tools/vivado/vivado-webpack.htm

[22]Xilinx, Inc., Vivado Video Tutorials webpage,
Available: http://www.origin.xilinx.com/training/vivado/

[23]Xilinx, Inc., Xilinx University Program website,
Available: http://www.xilinx.com/university

[24]Xilinx, Inc., Xilinx University Program Design Contests webpage,
Available: http://www.xilinx.com/support/university/design-contests.html

[25]YouTube, Xilinx Channel,
Available: http://www.youtube.com/user/XilinxInc?feature=watch
163

http://www.xilinx.com/support/university/design-contests.html
http://www.origin.xilinx.com/training/vivado/
http://www.xilinx.com/university
http://www.youtube.com/user/XilinxInc?feature=watch
http://www.xilinx.com/products/design_tools/vivado/vivado-webpack.htm
http://opencv.org/
http://opensource.org/licenses/category
http://www.khronos.org/opencl/
http://www.isi.edu/events/arc2013/Xilinx-ARC2013-Invited-Lysaght.pdf
http://thejournal.com/articles/2013/10/07/212-billion-devices-to-make-up-the-internet-of-things-by-2020.aspx
http://thejournal.com/articles/2013/10/07/212-billion-devices-to-make-up-the-internet-of-things-by-2020.aspx
http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-compatible-plug-in-peripheral-modules.html
http://www.maximintegrated.com/en/design/design-technology/fpga-design-resources/pmod-compatible-plug-in-peripheral-modules.html

CHAPTER 7: Education, Research and Training
164

8

First Designs on Zynq

his is the first of the practical chapters of The Zynq Book, which can be identified by
the green chapter numbers and piping on the first page. In these chapters, which are placed
at appropriate points within the book, the corresponding tutorials and practical exercises
that are provided on the accompanying website will be introduced, along with a brief
overview. It is not the intention to provide the practical exercises in the book itself; due to
the ever evolving state of software tools and design flows, keeping the detailed practical
instructions online permits better concurrency with the design tools.

As this is the first of the practical chapters, the accompanying exercises will be relatively
short and simple, with the main aim being to familiarise the reader with the required
software tools and the corresponding Zynq design flow.

Although not a design tutorial, the first practical that is available on the website is a
guide which provides a step-by-step walkthrough of the installation of the required tools
and ZedBoard device drivers. It is recommended that even if you already have the software
tools installed, that you read through this guide to ensure that all of the tools are setup as
required for the future practical exercises, and that the required working directory
structure is in the correct location on your host machine.

The first practical tutorial focuses on introducing the Zynq design flow, guiding you
through the creation of a new design project, where a hardware design will be created,
before exporting the design for the development of a software application.

Before starting, it is useful to provide an overview of The Zynq Book website.

T

165

CHAPTER 8: First Designs on Zynq
8.1. Software Installation Guide

A comprehensive guide for the installation of the Vivado Design Suite is provided in the
“Vivado Design Suite User Guide: Release Notes Installation and Licensing”, which is
available from Xilinx [1]. The two chapters of relevance are:

• Chapter 3, which details how to download and install a copy of the Vivado Design
Suite; and

• Chapter 5, which details how to obtain and manage a product license.

8.2. Aims and Outcomes

The general aim of this initial set of practical exercises is to introduce the design flow
and associated tools. In doing so, a simple design will be constructed, targeting the
ZedBoard.

After completion of this tutorial you will be able to:

• Create a new Zynq hardware project.

• Be able to configure a Zynq PS targeting the ZedBoard.

• Create and connect an interconnect between the Zynq PS and PL.

• Implement an IP module in the Zynq PL.

• Generate HDL files for the Zynq hardware design, and create a bitstream hardware
description for the Zynq PL.

• Create a simple software application which will execute on the Zynq PL and commu-
nicate with IP implemented in the PL.

The main aim of this tutorial is to provide an introduction to the Zynq design flow, and
the most important outcome is that you are familiar with the software tools required to
develop Zynq-based systems.

8.3. Overview of Exercise 1A

The first practical exercise involves the creation of a new hardware project in Vivado
IDE, targeting the ZedBoard, and will guide you through the process step-by-step. The
required steps are:
166

CHAPTER 8: First Designs on Zynq
1. Launch Vivado IDE for the first time.

2. Invoke the New Project Wizard.

3. Specify the required working directory for the design.

4. Target the ZedBoard as the default part for project.

This is a very simple exercise, with the sole objective being that your first Vivado IDE
project is correctly setup to allow you to complete the further exercises successfully.

Exercise 1A is available on the website: www.zynqbook.com

8.4. Overview of Exercise 1B

Building upon Exercise 1A, the next stage is to introduce the Vivado IDE environment,
focussing on the default layout, before creating a simple Zynq embedded system which will
first configure the Zynq PS for operation on the ZedBoard before implementing a GPIO
controller in the Zynq PL. The Vivado IP Integrator tool will be used to create the system
using the provided graphical environment, and the provided Designer Assistance tools will
be utilised for the automatic configuration and connection of an AXI interconnect which
connects the Zynq PS with the IP module in the PL. The GPIO controller will be connected
to the LEDs that are available on the ZedBoard.

The steps involved in this Exercise are:

1. Introduce the Vivado IP working environment and features.

2. Create a new IP Integrator block design.

3. Add and configure a Zynq Processing System module which is targeted at the Zed-
Board.

4. Add and configure a GPIO controller to connect to the LEDs on the ZedBoard.

5. Use the IP Integrator Designer Assistance tools to create and configure an AXI
interconnect to connect the Zynq PS and GPIO controller.

6. Generate HDL files for the hardware design and create a bitstream hardware
description file.

7. Export the finalised hardware design to the SDK.
167

CHAPTER 8: First Designs on Zynq
An overview of the hardware design that will be created in this exercise is provided in
Figure 8.1

Exercise 1B is available on the website: www.zynqbook.com

8.5. Overview of Exercise 1C

The final exercise in this first tutorial introduces the software creation side of the Zynq
design process, having already created the hardware design in Exercise 1B. A software
application will be created which will control the LEDs on the ZedBoard. The created
application will run on the Zynq PS and communicate with the GPIO controller in the PL.
The software drivers that are created by IP integrator for communication between the
software and the PL implemented hardware modules will be explored before building and
executing the software application on the ZedBoard.

The steps involved in this Exercise are:

1. Create an empty application project.

2. Add source code and build the application project.

3. Explore the generated software drivers and the corresponding functions which
allow the software to communicate with the implemented hardware.

4. Program the Zynq PL with the bitstream that was generated in Exercise 1B.

5. Execute the software application on the hardware and confirm that it controls the
LEDs on the ZedBoard as expected.

Exercise 1C is available on the website: www.zynqbook.com

LEDs

Zynq

PS
AXI GPIO

Zynq PL

Development Board

AXI Connection

Figure 8.1: Exercise1A Zynq Hardware Design
168

CHAPTER 8: First Designs on Zynq
8.6. Possible Extensions

Having completed Exercise 1C, there are some possible variations you can introduce to
personalise the developed system. For example, you could:

• Change the LED blink rate.

• Create a custom pattern for the LED blinking.

• Add a further GPIO controller to the hardware design which connects to the DIP
switches on the ZedBoard. Use the GPIO driver functions to take input from the DIP
switches to control the output of the LEDs.
Hint: As this extension requires hardware changes, the system would need to be re-
exported from Vivado IDE before making additional software changes in the SDK.

8.7. What Next?

This set of practical exercises concludes Part A of the book, “Getting to Know Zynq”.

Next, we move onto Part B, which looks in more detail at creating the hardware
component of a Zynq SoC. Further practical exercises will follow, illustrating these
concepts.

8.8. References

NOTE: All URLs last accessed June 2014.

[1] Xilinx, Inc, “Vivado Design Suite User Guide: Release Notes, Installation and Licensing”, UG973, June
2014.
Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug973-vivado-release-notes-
install-license.pdf
169

CHAPTER 8: First Designs on Zynq
170

PART B
Zynq SoC & Hardware

Design

9

Embedded Systems and

FPGAs

he term ‘embedded system’ has become widely used when describing a large number
of different applications, with a large number of platforms now available. These range from
small microcontrollers and DSPs, to large FPGAs and GPPs, and defining what exactly
comprises an embedded system is growing more and more challenging.

The aim of this chapter is to introduce the concept of embedded systems and to provide
some examples of where they would be deployed in terms of real-life applications. The
scope will then be narrowed to focus on embedded systems on FPGAs, and the generic
embedded system architecture will be explored. Individual components of the architecture
will be detailed, starting with the processor, and a high-level overview of some of the
fundamental operations, such as interrupts and execution cycles, will be discussed. Some
basic bus operations and properties, such as bus arbitration, memory transfers and
bandwidth, will also be covered.

9.1. What is an Embedded System?

An embedded system is a specialised computing system that is optimised to carry out a
single, or very few, dedicated functions. Embedded systems form part of larger devices, or
pieces of equipment, with the purpose of controlling a dedicated function within those
machines. The pre-determined functionality of an embedded system contrasts with that of

T

173

CHAPTER 9: Embedded Systems and FPGAs
a GPP, such as those found in a Personal Computer (PC), whereby a single processor will
perform a large number of very varied functions.

A GPP is not designed with any specific task in mind. A desktop computer, for example,
can be used to perform a myriad of tasks including document creation and editing, a home
entertainment system, an image and video editing system, or an internet terminal. An
embedded system is application-specific, and as such can be finely optimised to deliver the
chosen characteristics of a given application. Those characteristics could be to provide very
high performance in a given area, or low power consumption. It is only by making the
system application-specific that allows an embedded system to achieve such performance.
A GPP may be able to perform the functions of an embedded system, but is unlikely to
achieve the same system performance, and/or power consumption requirements. The
generic programmability of a GPP also comes at a cost, with GPPs generally being far more
expensive than those used in embedded systems.

9.1.1. Applications

Embedded systems are deployed in a large number of devices across a breadth of fields.
An overview of some of the more prominent uses for embedded systems is provided in
Figure 9.1.

A number of more specific applications from each of the highlighted fields are provided
as follows:

• Telecommunications — Mobile phones, routers, consumer radio and television.

Embedded

Systems

Telecommunications

Consumer

Electronics

Transport

Systems

Medical

Systems

Military and

Avionics

Figure 9.1: Embedded system application areas
174

CHAPTER 9: Embedded Systems and FPGAs
• Medical Electronics — Body scanning devices such as MRI machines, electronic
stethoscopes and pacemakers.

• Consumer Electronics — Digital cameras, video games consoles and washing
machines.

• Military and Avionics — RADAR and SONAR, guided missile systems, satellite
stations and flight navigation systems.

• Transport Systems — Anti-Lock Braking Systems (ABS), air bag deployment, on-
board entertainment, GPS and satellite navigation systems.

9.1.2. Generic Embedded System Architecture

In general, the architecture of an embedded system follows the architecture outlined in
Figure 9.2.

The individual components in Figure 9.2 are defined as follows:

• Processor — This is the ‘brains' of the system. It is programmed to perform the tasks
specific to the application of the embedded system.

System Bus

Peripheral Bus

Bridge

Peripheral Peripheral PeripheralPeripheral

Processor
Memory

Controller

Figure 9.2: Generic embedded system architecture
175

CHAPTER 9: Embedded Systems and FPGAs
• Memory Controller — Memory controllers manage the reading and writing of data
to and from main memory in an embedded system. Memory controllers reside in
on-chip soft cores, providing an interface between the system memory and all other
parts of the system.

• Peripherals — These are the components around the central processing unit.
Peripherals can be implemented as individual integrated circuits, be contained on-
chip with the processor, or may reside in an area of programmable logic such as an
FPGA.

• System Bus — In an embedded system with multiple buses, the system bus connects
the processor, memory controller and other high-speed devices together. As such, it
is the bus with the greatest bandwidth in the system.

• Peripheral Bus — The second bus creates two separate sections of the system,
allowing two arbiters to control and manage communications across the two buses.
This allows devices on the peripheral bus to communicate with each other, even
when a high-priority processor-memory transaction is taking place on the system
bus.

9.2. Processors

A processor is the main controlling unit within an embedded system. It controls and
orchestrates the system, supports software and co-ordinates exchanges with peripheral
components. In embedded systems where an operating system is used for the governing of
the system, it will run on the processor.

There are a variety of processors which can be used in an embedded system, as outlined
below:

• Microprocessor — A microprocessor is a single chip integrated circuit which
contains the complete central processing unit, and nothing else. In order to make a
microprocessor functional, external memory in the form of RAM and ROM, and
other peripherals must be added. The CPU in a PC is a good example of a micropro-
cessor.

• Microcontroller — A microcontroller contains an entire computing system on a
single chip. Unlike a microprocessor, a microcontroller comprises of a CPU with a
fixed amount of RAM/ROM and peripherals all within a single Integrated Circuit
(IC).
176

CHAPTER 9: Embedded Systems and FPGAs
• Digital Signal Processor — A digital signal processor is a processor which has been
designed specifically for the task of digital signal processing, with an instruction set
that is targeted accordingly. DSPs are designed to perform fast arithmetic operations,
and are capable of performing a multiply-accumulate operation in a single clock
cycle. This makes a DSP very efficient, both in terms of performance and power
consumption, when used for specific audio/video tasks, but very poor when used for
other tasks due to the restricted instruction set.

• Embedded Processor — An embedded processor is one which is physically
embedded within the programmable fabric of an FPGA device. Embedded
processors come in two varieties — hard and soft processors. Hard processors are
those which are built from dedicated silicon outwith the general-purpose logic of the
FPGA device, whereas a soft processor is built using the general-purpose logic of the
FPGA. A soft processor must be synthesised to fit into the FPGA fabric. In the case
of all embedded processors, both hard and soft, the local memory, bus interconnects,
memory controllers and internal peripherals must be realised in the FPGA general-
purpose logic.

9.2.1. Co-processors

A coprocessor is a processing core that supplements the functionality of the primary
processor, and is optimised for a single, specific task. By off-loading computations from the
main processor to one or more co-processing units, the overall system performance can be
accelerated.

Whereas the main processor may be used for a variety of different tasks, co-processors
are generally used to perform dedicated tasks. Examples of tasks which may be performed
on dedicated co-processors are:

• High-speed arithmetic

• Image and video processing

• Digital signal processing

• Data encryption

With reference to FPGA based embedded systems, the programmable logic provides a
perfect platform in which to create co-processing cores due to the ability to perform
parallel execution. This means that complex tasks that would require a large number of
sequential CPU clock cycles to compute can be executed far quicker in a PL based co-
processor. These are known as soft coprocessor cores. Other forms of acceleration can be
177

CHAPTER 9: Embedded Systems and FPGAs
implemented using dedicated hard processing cores, that do not reside in the FPGA fabric.
Collectively, this task off-loading processing is known as hardware acceleration.

9.2.2. Processor Cache

A cache is a small memory located between the CPU and main memory. It has a lower
access time than main memory and the cache is not accessible via the system bus. Cache is
used to store data that is frequently accessed by the processor from main memory. Opera-
tions which make use of cached data are therefore much faster than those where the data is
in main memory only.

As processors typically read data at a much faster rate than the system’s main memory,
the processor speed is constrained to that of the memory. By including cache memory in a
system — which contains the most frequently accessed data that can be read at a higher
rate than main memory — the processor is no longer constrained to the speed of the main
memory. This leads to an increased efficiency in terms of data access. The processor speed
is still limited, however, in the event of a cache miss — whereby the processor fails in its
attempt to read or write data in the cache. This results in the data being read/written to
main memory, and increased access latency.

A number of different levels of cache can exist within a system. These are outlined in
Figure 9.3, and expanded upon below.

Registers

Processor Core

Registers

Processor Core

Main

MemoryL
3

Figure 9.3: Cache levels and their locations relative to the processor cores and main memory
178

CHAPTER 9: Embedded Systems and FPGAs
It is useful to first introduce the two types of memory which are used — Dynamic RAM
(DRAM) and Static RAM (SRAM) — before going on to discuss the different levels of
cache.

Dynamic RAM (DRAM)

DRAM is the most common form of memory that is used in computing systems. A
DRAM chip consists of a number of memory cells which can each hold 1-bit of data, stored
in a capacitor. Every memory cell also features a transistor, which acts as a switch to allow
the control circuitry to read or write the state of the capacitor. As both the capacitor and
transistor are extremely small, millions of individual memory cells can fit in a single
DRAM chip.

Due to the fact that capacitors leak electric charge, the state of the bit of information held
by each memory cell will eventually fade unless the charge of the capacitor is periodically
refreshed by the memory controller. The memory controller does this by reading the state
of each memory cell and then writing the state back again. This is where dynamic RAM
gets its name.

Static RAM (SRAM)

SRAM uses a different technology to store information than DRAM. Whereas each bit of
memory in DRAM is stored in a capacitor, SRAM uses latches to store the data. Each
memory cell requires 4 or 6 latches to store a single bit of data, and therefore requires much
more space on a chip than DRAM, making it more expensive.The upside to SRAM is that it
does not need to be refreshed, thus making it much faster than DRAM. Due to the expense
of SRAM, it is usually only used in high-speed, low-capacity memory chips.

Level 1 (L1) Cache

L1 cache is the smallest form of cache memory, the size of which is typically 8 to 128 KB.
It is implemented in the form of SRAM which is built into the fabric of the processor core
and, as such, operates at the same clock rate. L1 cache typically consists of two sections:
data and instruction caches.

L1 cache is used to store a local copy of frequently accessed data and instructions,
enabling instant access by the processor.
179

CHAPTER 9: Embedded Systems and FPGAs
Level 2 (L2) Cache

L2 cache is usually external to individual processing cores, but is located extremely close
by. It is larger than L1 cache, typically in the region of 256 to 1024 KB, but has slower access
speeds. L2 cache is in the form of DRAM and is unified in a single section (unlike L1 which
is split into two sections). Larger quantities of data are constantly read in by L2 cache from
main memory before being fed to L1.

Level 3 (L3) Cache

Level 3 (L3) cache is shared among all processor cores. It is also implemented in DRAM,
and is the largest form of cache memory, typically in sizes of 2 MB and upwards.

9.2.3. Execution Cycles

In order for a program that is stored in memory to be executed by the processor it must
go through an instruction execution cycle. This is the process by which a system retrieves an
instruction from memory, determines the required actions for that instruction, and
executes those actions. Each instruction execution can be divided into three unique parts,
as shown in Figure 9.4. For obvious reasons, this process is sometimes referred to as the
fetch-and-execute cycle or the fetch-decode-execute cycle.

Before taking a closer look at each of the stages of the instruction execution cycle in
detail, it is useful to understand some of the terms that will be used:

• Machine Code — When writing a software application, it is often in a high-level
language (such as C/C++) which is easily understood by the developer, and human-
readable. Code in this form is meaningless to a processing system, and must be
converted, or compiled, into a form that the processor can understand. The final,
low-level, output that is readable by the processor is known as machine code - a

FETCH

Instruction

DECODE

Instruction

EXECUTE

Instruction

Figure 9.4: Steps of the instruction execution cycle
180

CHAPTER 9: Embedded Systems and FPGAs
stream of binary data relating to the program that the processor is able to interpret
and process.

• Opcodes — An opcode is an operation code which uniquely defines a function to be
performed — a machine code representation of a processor instruction. A processor
can execute many different operations, so each instruction is assigned a unique
numeric code.

• CPU Instruction Set — The instruction set for a given processor is the basic set of
commands which a processor can understand. It contains a specification of each of
the opcodes and native commands that can be performed by that processor.

Fetch Instruction

The fetch instruction is the first stage of the instruction execution cycle. The flow of the
operation is outlined in Figure 9.5.

With reference to Figure 9.5, the fetch instruction flow is as follows:

1. The program counter register contains a value that corresponds to an address in
memory containing the next instruction to be processed.

2. This value is transferred to the memory address register where the control unit
checks the value and fetches the corresponding instruction from memory.

3. That instruction is then stored in the memory buffer register before being trans-
ferred to the instruction register.

4. The program counter register is advanced by the control unit so that the value
matches the memory location of the next instruction to be executed.

Program

Counter
Memory

Instruction

Register

Decode

Instructionaddress instruction

advance to next

instruction address

Figure 9.5: Fetch instruction flow
181

CHAPTER 9: Embedded Systems and FPGAs
Decode Instruction

Once the instruction has been fetched from memory, the next step is to get the
instruction into a form that the processor can understand. This is the decode process. At
this point, the instruction that is stored in the instruction register is checked by the control
unit. This detects the opcode and addressing mode which have been used, and conse-
quently what actions must be performed to correctly execute the instruction.

There are three main addressing modes:

• Immediate Addressing — This requires no lookup of data as all of the required data
is located within the operands of the instruction. This makes immediate addressing
the fastest, but least flexible mode.

• Direct Addressing — Operands of instruction contain the memory address of the
required data. Required data must be fetched from this address.

• Indirect Addressing — Operands of instruction contain a memory address. Within
this memory address is a pointer to the address where the required data is stored.
This makes indirect addressing the most flexible, but slowest due to the two data
lookups.

Execute Instruction

Depending on the opcode that was determined by the decode process, a number of
different actions can be performed at this stage. In general, there are four main groups of
actions:

• Transfer of data between the processor and memory.

• Transfer of data between processor and I/O devices.

• Processing data, such as using the Arithmetic Logic Unit (ALU).

• Control operations that change the sequence of subsequent operations. These can be
conditional based on the values in a certain flag register.

 Once the instruction has been executed, the next instruction to be processed is fetched.
182

CHAPTER 9: Embedded Systems and FPGAs
The flow of an execute operation cycle is shown in Figure 9.6.

With reference to Figure 9.6, the flow is as follows:

1. The control unit passes decoded information from the decode process (as a
sequence of control signals) to the required functional units of the processor. This
could be, for example, to read values from registers, or writing to a register.

2. The processor performs the required operations, and the output is either stored in
memory or sent to an output device.

3. If the ALU is used, a conditional signal is relayed back to the control unit. As an
example, the signal could update the address of the program counter so that the
next instruction is fetched.

9.2.4. Interrupts

An interrupt is a signal which is generated to indicate to the processor that its attention
is required. Interrupts can be generated by hardware processing units and peripherals, and
also within the software itself. In hardware, an interrupt signal is an asynchronous signal
that is generated by a processing unit to indicate the need for attention from the processor.
In software, an interrupt is also an asynchronous event which indicated to the processor
that a change in execution is needed. The process of polling the generated interrupts,
however, is synchronous.

When the processor receives an interrupt it will halt the task that is currently being
processed, and jump to the one which has requested attention. This is in contrast with the

Control

Unit

conditional signal

if ALU is

used

Processor

control signals to relevant

function units of processor

result of operation

Memory

I/O Devices

Figure 9.6: Execute instruction flow
183

CHAPTER 9: Embedded Systems and FPGAs
process of polling, which is the synchronous sampling of a device’s status by the software
program. Instead of having the processor constantly poll the I/O ports of a device to see if
its attention is needed, the device will interrupt the processor.

Hardware interrupts can be further categorised into the following types:

• Maskable Interrupts (IRQs) — The trigger event of a masked interrupt is not
always important. It is the task of the programmer to decide whether the event
should cause the program to jump to the requested execution or not. Examples of
devices which may use maskable interrupts include timers, comparators and ADCs.

• Non-Maskable Interrupts (NMIs) — These are interrupts which should never be
ignored, and are therefore deemed much more important than maskable interrupts.
Events which require NMIs include power-on, external reset (from a physical
button) and serious device faults.

• Inter-Processor Interrupts (IPIs) — In multiple processor systems, one processor
may need to interrupt the operation of another processor. In this situation, an IPI
will be generated.

9.3. Buses

A bus provides the interconnection by which processors interface with other processors
and peripherals. Processors, memory controllers and peripherals connect to the bus via a
standard bus interface. The particular bus interface will depend on the particular bus archi-
tecture that is in use, but at a basic level a bus consists of address, control (read/write
requests and acknowledgements) and data signals [2]. This is detailed in Figure 9.7, where
the three main bus signals are highlighted:

• The address line transfers the memory addresses, or target port identification
numbers, to I/O devices.

• The control line governs the control and timing signals of a system, synchronising
operations and transmitting control signals such as interrupt requests and acknowl-
edgements.

• The data line is responsible for the transfer of data.
184

CHAPTER 9: Embedded Systems and FPGAs
Data transfer occurs in a bus cycle.

Any coprocessors that are present in an embedded system are directly connected, or
closely coupled, to the main processor via the processor bus. In a multi-processor system,
individual processor subsystems are connected by the system bus.

Buses also contain a bus arbiter which controls access to the bus. Not all connected
modules can request access to the bus, and they are categorised accordingly as bus masters
and bus slaves [2].

9.3.1. System and Peripheral Buses

In larger embedded system designs, it may be appropriate to use multiple buses to
provide sufficient bandwidth for communication between all processing and peripheral
cores. In such systems, the two main types of bus are the system bus and the peripheral bus.

System Bus

In an embedded system design, the system bus is the main method of providing commu-
nication between the various peripheral and processing cores. In smaller embedded system
designs, the system bus may be the only bus that is present within the design. In larger,
multiple-bus designs, the system bus will be the bus with the largest bandwidth that
connects the memory controller and the processor, as well as any high-speed devices. All
remaining peripherals, which do not require such high-speed access to the processor and
memory controller, will be connected via the peripheral bus.

 Peripheral Bus

In order to split the embedded system design into separate domains, a second bus —
known as the peripheral bus — can be added. This can be for a number of reasons, such as

Local

Memory

Local

I/O

BUS

CONTROL

ADDRESS

DATA

CPUCoprocessor

Figure 9.7: Bus comprised of control, address and data lines
185

CHAPTER 9: Embedded Systems and FPGAs
making the distinction between low-speed and high-speed devices or to provide dedicated
bandwidth for the communication between a group of peripheral cores. This allows a set of
peripherals to communicate between themselves in parallel with any communication on
the system bus, such as a processor-memory access.

Bus Bridge

In order to allow the communication between devices on separate buses, such as the
processor (on the system bus) requesting data from a peripheral core (on the peripheral
bus), a bridge between the two buses is required. A bridge is connected to both buses and
communicates requests between them. On one bus the bridge is connected as a bus master,
while having a slave connection on the other.

9.3.2. Bus Masters and Slaves

The modules that connect to the buses in an embedded system can be split into two
distinct categories:

• Bus Masters have the ability to request access to the bus and, as such, are responsible
for initiating data transfers by driving the address and control signals. Bus cycles can
be initiated, and other bus modules informed of the bus cycle type.

• Bus Slaves do not possess the ability to initiate bus cycles, and instead only monitor
bus activity. Signals on the address and control lines are decoded, and when
addressed, can either place, or accept, data on/from the bus.

9.3.3. Bus Arbitration

As a bus is shared amongst all devices in an embedded system, there is a requirement to
determine which bus master device is permitted to use the bus at any one time. The
method for determining this access is called bus arbitration. If more than one master device
requests access to the bus at the same time, it is the job of the bus arbiter to decide which
device should be granted access first. In simple terms, the requesting master device with
the highest priority (lowest assigned number) will be granted access to the bus first,
provided a bus cycle is not already in progress. Lower priority masters (higher assigned
numbers) will be placed in a waiting queue, and processed upon completion of the higher
priority requests.
186

CHAPTER 9: Embedded Systems and FPGAs
9.3.4. Memory Access

The way in which memory controllers are accessed in an embedded system can have a
huge effect on overall performance. Even if a very efficient type of memory and memory
controller is used, the system performance could suffer from poor memory access control.
It is important that the system is structured, and accessed, in a way which will maximise
the memory bandwidth whilst keeping the required resources to a minimum.

Programmable Input/Output (I/O)

One way of controlling the movement of data between the memory controller and other
peripherals is to route all data transfers via the processor. This method of memory transfer
is known as programmable I/O, and allows the system to process memory transfers with a
minimum amount of resources. This approach requires that the peripheral and the
processor are situated on the same bus, and the processor acts as a central point of commu-
nication between all peripherals and the memory. If the number of memory transfer
requests between peripherals and memory is high, the processor could spend a lot of time
performing memory transfers and less time performing other computations [2].

Programmable I/O is an effective way of managing memory transactions, whilst using a
minimum amount of resources, provided that the system implements most of the function-
ality in the programmable logic. If, however, the processor is required to perform a large
number of other computations, other methods may be preferable [2].

Direct Memory Access (DMA)

One way of reducing the burden on the processor is to use Direct Memory Access
(DMA) to perform memory transfers. Using this approach, the processor issues a memory
transfer request to the DMA controller, which will then perform the memory transaction.
This allows the processor to perform other tasks while the DMA controller performs the
transfer. In this situation, the DMA controller acts as both a bus master and a bus slave. As
a master, the DMA controller communicates with the memory controller whilst also
arbitrating for the bus. While acting as a slave, the DMA controller sets up memory
transfers by responding to requests from bus masters (the processor, in most cases). In
order to initiate the transaction, the DMA controller must be provided with the following
information [2]:

• Source address — the address where the data will be read from.

• Destination address — the location where the data should be written to.
187

CHAPTER 9: Embedded Systems and FPGAs
• Transfer length — the number of bytes that should be transferred.

An overview of a DMA memory transfer is provided in Figure 9.8.

With reference to Figure 9.8, the DMA memory transfer process is:

1. The processor sets up the device wishing to use the DMA to transfer data to mem-
ory by issuing a DMA command and disables all DMA interrupts.

2. The DMA controller transfers data from the peripheral device to memory leaving
the CPU free to perform other computations.

3. Following completion of the data transfer, an interrupt is sent to the CPU to inform
it that it can close the DMA transfer.

9.3.5. Bus Bandwidth

Bus bandwidth is the total amount of data that can be transferred on a bus in a given unit
of time. The value for bus bandwidth depends on two parameters:

• Bus data width — this is the number of physical lines over which the bus transfers
data simultaneously. A bus with 32 individual data lines can transmit 32 bits of data
simultaneously.

• Bus frequency — this is the speed at which the bus operates. This refers to the
number of data bits which can be transmitted/received per second. This is defined in
Hertz (Hz).

CPU sets up DMA transfer

CPU free

to perform

other

computations

Device to memory

DMA transfer

CPU ends DMA transfer

Figure 9.8: DMA memory transfer operation
188

CHAPTER 9: Embedded Systems and FPGAs
The relationship between these parameters and bus bandwidth is given in Equation (1).

(1)

As an example, a bus with a data width of 32 bits operating at 10 MHz has a bus
bandwidth and, therefore, a maximum throughput of:

Obviously, the more peripherals that are connected to a bus, the higher the required
throughput on the bus will be. Therefore, it is important that the bus bandwidth is suffi-
ciently high in order to prevent the system from saturating the bus.

9.4. Chapter Review

In this chapter, the concept of an embedded system has been introduced and a generic
embedded system architecture has been explored. The role of processors within embedded
systems has been discussed, and some of the processing features, such as processor cache
and execution cycles have been covered. The function of coprocessors was also introduced
as well as the use of software/hardware interrupts.

Communication between all components within an embedded system is reliant on the
inclusion of a bus system, and their functionality has been discussed in this chapter. The
requirement for multiple bus systems was introduced, and the distinction between bus
master and slave devices was reviewed. Bus arbitration and memory access techniques were
summarised, and the importance of bus bandwidth was discussed.

9.5. References
[1] D. Liu, “Introduction” in Embedded DSP Processor Design: Application Specific Instruction Set Processors,

Morgan Kaufmann, 2008, pp 1 - 46.

[2] R. Sass and A. G. Schmidt, “Managing Bandwidth” in Embedded Systems Design with Platform FPGAs:
Principles and Practices, 1st. Ed, Morgan Kaufmann, 2010, pp 295 - 346.

[3] R. Sass and A. G. Schmidt, “System Design” in Embedded Systems Design with Platform FPGAs: Principles
and Practices, 1st. Ed, Morgan Kaufmann, 2010, pp 115 - 196.

Bus Bandwidth (Mbits/s) Bus Width bits() Bus Frequency (MHz)×=

Bus Bandwidth 32 bits 10 MHz× 320 Mbits/s (40 MBytes/s)= =
189

CHAPTER 9: Embedded Systems and FPGAs
190

10

Zynq System-on-Chip

Design Overview

n this chapter we will examine all aspects of the Zynq SoC design. We will take a closer
look at certain aspects of the ARM processing cores and their operating modes, as well as
laying down the foundations for some of the later chapters in this book. To be specific, the
various interconnects available, interfacing signals, interrupts and the memory facilities on
a Zynq device will all be introduced in this chapter, before being covered in greater detail as
the book progresses.

One of the main objectives of this chapter is to detail the connections and shared
resources that exist between the PS and the PL. These include the interconnect system,
memories and a variety of different interfaces. Further, this chapter also describes the
various operating modes of the Zynq SoC and the configurations of the PS and PL which
can be used for different tasks and purposes.

As all Zynq-7000 AP devices feature the same dual-core ARM Cortex-A9 based PS, the
information covered in this chapter can be applied across the entire Zynq range, unless
otherwise stated. There are some small differences in certain models, mainly pertaining to
the maximum operating frequency of the PS, and these will be explicitly mentioned in the
relevant sections.

I

191

CHAPTER 10: Zynq System-on-Chip Design Overview
10.1. Interfacing and Signals

In this section the user-visible interfaces and signals of the Zynq-7000 AP SoC device
will be detailed. Special attention is given to the interfaces between the PS and PL. The
major groups of signals and interfaces are highlighted in Figure 10.1.

10.1.1. PS-PL AXI Interfaces

The main form of connection between the PS and PL elements of Zynq is via AXI inter-
faces, which provide high bandwidth, low latency links between both parts of the device.
Each AXI interface on the PS side consists of multiple AXI channels; over a thousand
signals are used to implement the nine PL interfaces. Theses are detailed in Table 10.1.

2x M_AXI_GP

2x S_AXI_GP

4x S_AXI_HP

1x S_AXI_ACP

AXI Interfaces

DDR Memory

Quad-SPI

USB

NAND,

NOR/SRAM

Ps_CLK,

POR_RST_N,

SRST_N

PS Signals

and Interfaces

User SelectIO

XADC

Multi-Gigabit

Serial

Transceivers

(MGSX)*

PL Signals

*Zynq 7z030, 7x045 & 7z100 only

AXI Idle,

DDR Arb,

SRAM Int

DMA Req/Ack

FCLKs

FTMD Trace,

FTMT Trigs

IRQ, Event,

Standby

Misc.

PL

Signals

PL Power Pins

PS Power Pins

Programmable Logic (PL)

Processing

System

(PS)

EMIOJTAG

MIO

Boot Pins

GigE, SDIO, SPI,

I2C, CAN, UART,

GPIO, TTC, SWDT

MIO Pins, EMIO Signals, JTAG

Figure 10.1: Zynq-7000 AP SoC interfaces, signals and pins
192

CHAPTER 10: Zynq System-on-Chip Design Overview
10.1.2. PL Co-Processing Interfaces

This section provides an overview of the interfaces that are available for communication
between the PL and the PS.

Accelerator Coherency Port (ACP) Interface

The ACP is a 64-bit slave interface on the SCU which provides an asynchronous cache-
coherent access point from the PL to the PS. The ACP is accessible by a number of PL
masters to provide access to the memory subsystem in the same manner as the APU
processors. This has the effect of increasing overall performance, improving power
consumption and simplifying software. The ACP interface behaves as a standard AXI slave
interface and supports most standard read and write transactions without any additional
coherency requirements placed on the PL components. The ACP therefore provides cache-
coherent access from the PL to the CPU caches while any memories local to the PL are
non-coherent with the CPUs [2].

Any read transactions through the ACP to a coherent section of memory go through the
SCU to check if any of the required data is currently held within CPU L1 cache. If data is

Table 10.1: PS-PL AXI interfaces

Interface
Name Interface Description Master Slave Signals

M_AXI_GP0
General purpose ports with a
path to the OCM and access
to a port on the DDR mem-
ory controller.

PS PL

See Section 10.2.6 AXI_GP
Interfaces.

M_AXI_GP1 PS PL

S_AXI_GP0 PL PS

S_AXI_GP1 PL PS

S_AXI_ACP

Accelerator Coherency Port
(ACP), cache-coherent
transaction and path to L2
cache.

PL PS See Section 10.2.5
AXI_ACP Interface.

S_AXI_HP0 High performance ports with
read/write FIFOs, a path to
the OCM and two dedicated
memory ports on the DDR
controller. AXI_HP inter-
faces are also know as AFI.

PL PS

See Section 10.2.4 AXI_HP
Interfaces.

S_AXI_HP1 PL PS

S_AXI_HP2 PL PS

S_AXI_HP3 PL PS
193

CHAPTER 10: Zynq System-on-Chip Design Overview
held within the L1 cache, the requested data is returned directly to the requesting
component. In the case that the data is not found in the L1 cache, the L2 cache is also
checked before the data request is passed to the main memory. [2]

Write transactions to coherent memory regions have coherence enforced by the SCU,
before the write is forwarded to main memory. Optionally, write transactions can also
allocate into L2 cache, which removes the performance and power impact of writing to off-
chip memory [2].

ACP Usage

The ACP supplies a low latency path between the accelerators implemented in the PL
and the PS. The steps involved in a communication between the PS and a PL accelerator are
summarised as follows [2]:

1. Input data for the accelerator is prepared with the CPU’s local cache space.

2. A message is sent to the accelerator from the CPU via one of the AXI General Pur-
pose (AXI_GP) master interfaces to the PL.

3. The PL accelerator fetches data via the ACP. It is processed and a result is returned
via the ACP.

4. A flag is set by the accelerator by writing to a known location which indicates that
the data processing is complete. The status of the flag can be polled by the PS or an
interrupt can be generated.

In comparison to a tightly-coupled co-processor, ACP has relatively high access
latencies. As a result, ACP is not recommended for fine-grained instruction-level acceler-
ation. Due to the relatively small transaction overhead when compared to the transaction
time, ACP does not have a clear advantage over traditional memory mapped PL acceler-
ation for coarse-grain acceleration (such as video frame-level processing) either. ACP is
therefore best used for medium-grain acceleration, such as a block-level cryptography
accelerator. [2].

ACP read and write behaviour based on the current cache status is detailed in Table 10.2.
From this, it is clear that access latencies are low when cache hits occur [2].
194

CHAPTER 10: Zynq System-on-Chip Design Overview

ACP Limitations

A number of limitations of the ACP exist [2]:

• Locked access is not allowed for coherent memory.

• Exclusive access is not allowed for coherent memory.

Table 10.2: ACP read and write behaviour based on current cache status [2]

Action Description

ACP Read — I (Invalid) Data fetched from external memory by the SCU via one
of two AXI master interfaces and forwarded to the ACP
directly. CPU L1 cache state is not affected.

ACP Read — M (Modified) Data fetched from the L1 cache with M status by the
SCU. CPU L1 cache state is not affected.

ACP Read — S (Shared) Data fetched from the L1 cache with S status by the SCU.
CPU L1 cache state is not affected.

ACP Read — E (Exclusive) Data fetched from the L1 cache with E status by the
SCU. CPU L1 cache state is not affected.

ACP Write — I (Invalid) Data is written to external memory through one of two
AXI master interfaces. CPU L1 cache state is not
affected.

ACP Write — M (Modified) Data in the CPU L1 cache is flushed out to external
memory before ACP data is written into the external
memory interface. L1 cache status is changed from M to
I.
L1 cache flush step is skipped if the SCU overwrites the
entire cache line.

ACP Write — S (Shared) Data is written to external memory through one of two
AXI master interfaces. L1 cache status is changed from S
to I.

ACP Write — E (Exclusive) Data is written to external memory through one of two
AXI master interfaces. L1 cache status is changed from S
to I.
195

CHAPTER 10: Zynq System-on-Chip Design Overview
• Accesses from other AXI masters can be starved by continuous access to the OCM
over the ACP. ACP bandwidth should be moderated to less than the peak OCM
bandwidth to allow access from other masters. This can be achieved by regulating
burst sizes to less than eight 64-bit words.

• Write transactions with AWLEN=3, AWSIZE=3 and WSTRB ≠ 11111111 can
cause the cache line in the CPUs to be corrupted.

• Modules that prioritise write requests over read requests, such as PCI Express
(PCIe), should not be connected to the ACP as they can create deadlock. They
should be connected to the AXI GP or HP ports to avoid this.

10.1.3. Interrupt Interface

Interrupts between the PS and PL are controlled by the Generic Interrupt Controller
(GIC), which supports 64 interrupt lines. Six interrupts are driven from within the APU,
including the L1 parity fail, L2 interrupt and Performance Monitor Unit (PMU) interrupt.

The interrupt output from the GIC drives either IRQ or Fast Interrupt ReQuest (FIQ)
signals as inputs to the CPUs. Selection of the processor target for the interrupt is via an
SCU register within the APU. Interrupts specific to the APU are outlined in Table 10.3 [2].

Table 10.3: APU-specific interrupts [2]

Interrupt Description

32
Errors from CPU0 including L1 data cache, L1 instruction cache, Trans-
lation Look-aside Buffer (TLB), Global branch History Buffer (GHB),
and Branch Target Address Cache (BTAC) parity errors.

33 Errors from CPU1 including L1 data cache, L1 instruction cache, TLB,
GHB, and BTAC parity errors.

34 Any errors from the L2 cache controller, including parity errors.

92 Parity errors from the SCU generate a third interrupt.

37 PMU of CPU0.

38 PMU of CPU1.
196

CHAPTER 10: Zynq System-on-Chip Design Overview
10.2. Interconnects

The interconnect that is located within the PS facilitates the communication of read,
write and response transactions between master and slave clients, and is comprised of
multiple switches to connect system resources using AXI point-to-point channels. The
interconnect, belonging to the ARM AMBA family of buses, implements a large array of
interconnect communication capabilities and overlays for Quality-of-Service (QoS), debug
and test monitoring. Multiple outstanding transactions are managed by the interconnect,
which is designed for low-latency paths for ARM CPUs. In terms of the PL master controls,
the interconnect is capable of high-throughput and cache coherent data paths [4].

10.2.1. Interconnect Features

The AXI interconnect system is the primary mechanism for data communications on
Zynq devices. A summary of the interconnect features is provided below [4]:

AXI high performance datapath switches:

• Snoop control unit

• L2 cache controller

• Interconnect switches based on ARM NIC-301:

- Central interconnect

- Master interconnect

- Slave interconnect

- Memory interconnect

- OCM interconnect

- AMBA Advanced High-Performance Bus (AHB) and Advanced Peripheral Bus
(APB) bridges

PS-PL Interfaces:

• AXI_ACP, one cache coherent master port for the PL

• AXI_HP, four high performance/bandwidth master ports for the PL

• AXI_GP, four general purpose ports. Two master ports and two slave ports.
197

CHAPTER 10: Zynq System-on-Chip Design Overview
10.2.2. Interconnects, Masters and Slaves

The overall interconnect structure features a number of different individual interconnect
switches, as well as two classes of connections: master and slave. These are outlined in this
section.

Interconnect Switches

The various interconnect switches available on the interconnect are summarised as
follows [4]:

• Central Interconnect — The central interconnect is the core of the ARM NIC-301-
based interconnect switches.

• Master Interconnect — The master interconnect controls the switching of the low-
to-medium speed traffic from AXI_GP ports, Device Configuration (DevC) and
Device Access Port (DAP) to the central interconnect.

• Slave Interconnect — The slave interconnect controls the switching of low-to-
medium speed traffic from the central interconnect to I/O peripherals, AXI_GP and
other blocks.

• Memory Interconnect — The memory interconnect controls the switching of high-
speed traffic from the AXI_HP ports to DDR DRAM and OCM (via the OCM inter-
connect).

• OCM Interconnect — The OCM interconnect controls the switching of high-speed
traffic between the OCM and the central and memory interconnects.

• SCU— The SCU functions like a switch from the perspective of traffic to its AXI
master ports and from its AXI slave ports, due to the address filtering feature.

• L2 Cache Controller — The L2 cache controller functions like a switch from the
perspective of traffic to its AXI master ports and from its AXI slave ports, due to the
address filtering feature.

Examples of the two types of interconnect connections are provided as follows.
198

CHAPTER 10: Zynq System-on-Chip Design Overview
Interconnect Masters

Interconnect masters include [4]:

• CPUs

• ACP

• High performance PL interfaces, AXI_HP{3:0}

• General purpose PL interfaces, AXI_GP{1:0}

• DMA controller

• AHB masters — I/O Peripherals (IOPs) with local DMA units

• Device Configuration (DevC) and Debug Access Port (DAP)

Interconnect Slaves

Interconnect slaves include [4]:

• General purpose PL interfaces, M_AXI_GP{1:0}

• OCM

• DDR DRAM

• Global Programmers View (GPV) — programmable registers of the interconnect

• AHB slaves — IOPs with local DMA units

• APB slaves — programmable registers in various modules

10.2.3. Connectivity

The interconnect does not offer a full cross-bar structure, whereby all masters can
communicate with all slaves. Which master can access which slave is detailed in Table 10.4.
199

CHAPTER 10: Zynq System-on-Chip Design Overview
10.2.4. AXI_HP Interfaces

There are four AXI_HP interfaces which provide high bandwidth datapaths from the PL
bus masters to the OCM and DDR memories. Two FIFO buffers are included on each
interface for read and write traffic. The interconnect that connects the PL to memory
routes high-speed AXI_HP ports to two DDR memory ports, or the OCM. In some Xilinx
documentation, the AXI_HP interfaces are also referred to as the AXI FIFO Interface
(AFI), in reference to their buffering capabilities.

Features of the AXI_HP interfaces include [4]:

• 32- or 64-bit data master interfaces, independently programmed on a per port basis.

• Automatic expansion of transfer size from 32-bits to 64-bits for unaligned 32-bit
transfers.

• Programmable release threshold of write commands.

• Asynchronous clock frequency domain crossing for all PL-PS interfaces.

• Read and write FIFOs.

• Command and Data FIFO fill-level counts are PL-viewable.

Table 10.4: Interconnect master-slave access [4] (‘x’ denotes access)

Master Sl
av

e
OCM DDR

Port 0
DDR
Port 1

DDR
Port 2

DDR
Port 3

M_AXI_
GP

AHB
Slaves

APB
Slaves GPV

CPUs X X ---- ---- ---- X X X X

AXI_ACP X X ---- ---- ---- X X X X

AXI_HP{0,1} X ---- ---- ---- X ---- ---- ---- ----

AXI_HP{2,3} X ---- ---- X ---- ---- ---- ---- ----

S_AXI_GP{0,1} X ---- X ---- ---- X X X ----

DMA Controller X ---- X ---- ---- X X X ----

AHB Masters X ---- X ---- ---- X X X ----

DevC, DAP X ---- X ---- ---- X X X ----
200

CHAPTER 10: Zynq System-on-Chip Design Overview
PL ports offer QoS signalling.

A diagram of the AXI_HP interfaces is provided in Figure 10.2.

RdAddr

WrAddr

WrData

BResp

RdData

32/64-bit
PL AXI
Channels

RdAddr

WrAddr

WrData

BResp

RdData

64-bit
PS AXI
Channels

Read Channel

Write Channel

APB
Interface

QoS en
Issue
Capability

FIFO
Levels

FIFO
Levels

QoS en
Issue
Capability

WrAddr
Channel Q

Bresp
Channel

WrData
Channel FIFO

RdData
Channel FIFO

RdAddr
Channel Q

Registers

Figure 10.2: AXI_HP interfaces
201

CHAPTER 10: Zynq System-on-Chip Design Overview
Further information on the AXI_HP interface is available in Chapter 5 of the Zynq-7000
All Programmable SoC Technical Reference Manual [4].

10.2.5. AXI_ACP Interface

The ACP provides a low-latency connection between the PS and PL, with optional
coherency with L1 and L2 caches [4]. It is a 64-bit interface which allows the PL to
implement an AXI master which has access to the OCM and L2 cache.

From the perspective of the system, the ACP interface has comparable connectivity as
the CPUs in the APU. For this reason, the ACP and the APU CPUs directly compete for
resources outside of the APU [4]. This means that when the ACP interface is in use,
sections of the cache space will be occupied by the co-processing task. Due to this, CPU
processes which rely on CPU caches for high performance, or even real-time performance,
may not be able to meet required deadlines. If this is the case, then it may be preferable to
use the AXI_HP interface to store task data in the OCM.

10.2.6. AXI_GP Interfaces

The AXI_GP interfaces are directly connected between the ports of the master inter-
connect and the slave interconnect. Unlike the AXI_HP interfaces which feature a 1 KB
data FIFO for buffering [4], AXI_GP has no additional buffering. Performance is therefore
constrained by the ports of the master and slave interconnects. These interfaces are for
general-purpose only and should not be used for high performance tasks.

Features of the AXI_GP interface include [4]:

• 32-bit data bus width.

• 12-bit master port ID width.

• 6-bit slave port ID width.

• Master and slave port acceptance capability of 8 reads and 8 writes.

The AXI_GP interface is capable of supporting multiple peripherals on each port.

10.3. Memory

Zynq-7000 AP devices feature a number of different types of memory and memory
interfacing facilities. In this section these memory facilities will be introduced.
202

CHAPTER 10: Zynq System-on-Chip Design Overview
10.3.1. Memory Interfaces

The memory interface unit on all Zynq-7000 AP devices includes a dynamic memory
controller and static memory interface modules. The dynamic memory controller is
compatible with the following types of memories: DDR3, DDR3L, DDR2 and LPDDR2.
The static memory controllers support a NAND flash interface, a Quad-SPI flash interface,
a parallel data bus and parallel NOR flash interface [9].

Dynamic Memory Interface

The multi-protocol Double Data Rate (DDR) memory controller consists of three major
modules: a core memory controller and scheduler (DDRC), an AXI memory port interface
(DDRI) and a digital PHY and controller (DDRP) [3].

The DDR memory controller can be configured to operate in either 16-bit or 32-bit
mode, offering access to a 1 GB address space with a single rank DRAM memory configu-
ration of 8-, 16- or 32-bit. EEC memory is supported, but only in 32-bit bus access mode. A
maximum speed of 1333 Mb/s is supported when DDR3 is used [9].

Shared access to common memory for the PS and PL is supported through the multi-
ported DDRI, which features Four AXI slave ports to accommodate this [9]:

• PL access via two dedicated 64-bit ports (AXI_HP).

• One 64-bit port dedicated to the ARM CPU(s) via the L2 cache controller. This port
can be configured for low latency.

• All other AXI masters share the remaining port via the central interconnect.

Each AXI interface features a dedicated transaction FIFO.

The DDRP PHY processes read/write requests from the controller and, within the
timing constraints of the timing DDR memory, translates them into specific signals. The
PHY uses signals from the controller to create internal signals that connect to the DDR
pins via the digital PHYs. PCB signals connect the DDR pins to the DDR device(s).
203

CHAPTER 10: Zynq System-on-Chip Design Overview
A block diagram of the DDR memory controller is provided in Figure 10.3.

The features of the DDR memory controller are extensive and for the purposes of this
book, not all will be covered. For further information on the DDR memory controller,
please refer to Chapter 10 of the Zynq-7000 All Programmable SoC Technical Reference
Manual [3].

DDR Interface

S0

64-bit
CPUs

& ACP

S1

64-bit
Other Bus

Masters

S2

64-bit

AXI_HP{2,3}

S3

64-bit

AXI_HP{1,0}

Configuration

RegistersS
32-bit

APB

DDR Core DDR PHY

DDR2

LPDDR2

DDR3

Device Boundry

16- or

32-bit
DDR

DRAM

Memory

Device(s)

Transaction

Scheduler and

Queues

Programmable

Algorithms

AXI 3 port

Arbiter

Separate

Read/Write

Requests

Figure 10.3: DDR memory controller block diagram
204

CHAPTER 10: Zynq System-on-Chip Design Overview
The devices supported by the DDR memory controller are subject to the conditions
outlined in Table 10.5.

A list of example memory configurations for Zynq devices is provided in Table 10.6.

Table 10.5: Memory connectivity limitations [9]

Parameter Value Notes

Maximum total memory den-
sity

1 GB 1 GB of address map is allocated to
DRAM

Total data width (bits) 16, 32 ECC can only use a 32-bit configu-
ration: 16 data bits, 10 check bits

Component data width (bits) 8, 16, 32 4-bit devices are not supported

Maximum ranks 1 ----

Maximum row address (bits) 15 ----

Maximum bank address (bits) 3 ----

Table 10.6: Possible Zynq-7000 SoC memory configurations

Memory
Type

Component
Configuration

Number of
Components

Component
Density

Total
Width

Total
Density

DDR3/
DDR3L

x16 2 4 Gb 32 1 GB

DDR2 x8 4 2 Gb 32 1 GB

LPDDR2 x32 1 2 Gb 32 256 MB

LPDDR2 x16 2 2 Gb 32 512 MB

LPDDR2 x16 1 2 Gb 16 256 MB
205

CHAPTER 10: Zynq System-on-Chip Design Overview
Static Memory Interface

The Static Memory Controller (SMC) can be used as either a NAND flash controller, or
a parallel port memory controller. The SMC supports the following types of memories [8]:

• NAND flash

• NOR flash

• Asynchronous SRAM

All addresses, commands, data and memory device protocols are handled by the SMC,
allowing the user to access the controller by reading or writing into the operational
registers. The optional registers of the SMC are configured through an APB interface. The
SMC is based on the ARM PL353 static memory controller.

The features of both the NAND flash and Parallel (SRAM/NOR) interfaces are outlined
in Table 10.7.

Table 10.7: SMC interface features [8]

NAND Flash Interface Parallel (SRAM/NOR) Interface

Up to a 1 GB device 8-bit bus width

Programmable I/O cycle timing Programmable I/O cycle timing on a per
chip select basis

16-word read and 16-word write data
FIFOs

16-word read and 16-word write data
FIFOs

8-word command FIFO 8-word command FIFO

8/16-bit I/O width with single chip select One chip select with up to 26 address sig-
nals

Open NAND Flash Interface (ONFI)
Specification 1.0

Two chip selects with up to 25 addresses
(32 + 32 MB)

Asynchronous memory operating mode Asynchronous memory operating mode

1-bit ECC hardware with software assist ----
206

CHAPTER 10: Zynq System-on-Chip Design Overview
A block diagram of the SMC is provided in Figure 10.4.

N
A
N
D

F
la
s
h

C
o
n
tr
o
lle
r

R
e
a
d

D
a
ta

F
IF
O

C
o
m
m
a
n
d

F
IF
O

W
ri
te

D
a
ta

F
IF
O

E
C
C

M
e
m
o
ry

In
te
rf
a
c
e

C
o
n
tr
o
lle
r

S
R
A
M
/N
O
R

C
o
n
tr
o
lle
r

M
e
m
o
ry

In
te
rf
a
c
e

C
o
n
tr
o
lle
r

C
o
m
m
a
n
d

F
IF
O

R
e
a
d

D
a
ta

F
IF
O

W
ri
te

D
a
ta

F
IF
O

S
ta
ti
c

M
e
m
o
ry

C
o
n
tr
o
lle
r
(S
M
C
)

S
la
v
e

P
o
rt

S
la
v
e

P
o
rt

F
o
rm
a
t

M
e
m
o
ry

M
a
n
a
g
e
r

C
o
n
tr
o
l
a
n
d

S
ta
tu
s

R
e
g
is
te
rs

I/
O

B
u
ff
e
r

C
o
n
tr
o
l

A
X
I

In
te
rc
o
n
n
e
c
t

A
P
B

In
te
rc
o
n
n
e
c
t

IR
Q

ID

#
5
0

M
IO

to

T
h
e

M
e
m
o
ry

D
e
v
ic
e

Figure 10.4: Static Memory Controller (SMC) block diagram
207

CHAPTER 10: Zynq System-on-Chip Design Overview
With reference to the block diagram in Figure 10.4, the function of some of the modules
is described below [8]:

• Memory Manager — The memory manager controls and tracks the current state of
the CPU_1x domain state machine. It is responsible for controlling direct commands
issued to the memory, updating the register values that are used in the memory clock
and controlling entry and exit from the low-power mode through the APB interface.

• Format — The format module negotiates between the memory manager and the
AXI slave interface, with requests from the memory manager having the higher
priority. Requests from AXI read and write channels are negotiated on a round-robin
basis. AXI transfers are also mapped onto the applicable channels by the format
module, which passes them to the memory interface via the command FIFO.

• Interconnect Interfaces — A memory mapped area for software to read and write
control and status registers is provided by the APB interface.
The AXI interface is memory mapped to allow software to read and write to/from
the memory in NOR/SRAM controller mode.

Access to the SMC memories is provided through a 32-bit AHB bus. The SMC memory
address map is provided in Table 10.8.

10.3.2. On-Chip Memory (OCM)

The on-chip memory contains 256 KB of RAM and 128 KB of ROM — this is where the
BootROM resides. The OCM supports two 64-bit AXI slave interface ports — one port is
dedicated for CPU/ACP access via the APU SCU and the other is shared by all other bus
masters within the PS and PL. The BootROM is not visible to the user as it is reserved for
exclusive use by the boot process [6].

By implementing RAM as a double-wide memory (128 bits) the OCM is able to support
high AXI read and write throughput for RAM access. In order to make full use of the high

Table 10.8: SMC memory address map [8]

Register Base Address Description

0xE100_0000 SMC NAND memory address range

0xE200_0000 SMC SRAM/NOR CS 0 memory address range

0xE300_0000 SMC SRAM/NOR CS 1 memory address range
208

CHAPTER 10: Zynq System-on-Chip Design Overview
RAM access throughput, user applications must use 128-bit aligned addresses and even
AXI burst sizes [6].

The TrustZone security feature is supported for memory blocks of 4 KB; the 256 KB of
RAM can be divided into 64 blocks of 4 KB, with each assigned independent security
attributes.

A block diagram of the OCM is provided in Figure 10.5.

With reference to the block diagram in Figure 10.5, there are 10 AXI channels associated
with the OCM [6]:

• 5 AXI channels for the CPU/ACP (SCU) port

• 5 AXI channels for the other PS/PL masters (OCM switch port)

Arbitration of the read and write channels of the SCU and OCM switch ports is
controlled within the OCM module. Only RAM accesses receive parity generation and
checking. A register access APB port and interrupt signal (IRQ) are the other main inter-
faces to/from the OCM module [6].

Parity

Generation

& Checking

256 KB

RAM

SCU AXI64

RdCmd

SCU AXI64

WrCmd

SCU AXI64

WrData

OCM

Switch

AXI64

RdCmd

OCM

Switch

AXI64

WrData

OCM

Switch

AXI64

WrCmd

Arbiter

Registers

APB I/F

SCU AXI64

RdData

SCU AXI64

Bresp

OCM

Switch

AXI64

Bresp

OCM

Switch

AXI64

RdData

IRQ

4-port

Memory Controller

Figure 10.5: OCM block diagram
209

CHAPTER 10: Zynq System-on-Chip Design Overview
Key features of the OCM module include [6]:

• 256 KB on-chip RAM

• 128 KB on-chip BootROM (not visible to user)

• Two AXI 3.0, 64-bit slave interfaces

• Support for full AXI 64-bit bandwidth for simultaneous read/write commands on
the OCM interconnect port (optimal address alignment restrictions apply)

• TrustZone security support for on-chip RAM (4 KB page granularity)

• Byte-wise parity generation, checking and interrupt support for RAM

Further details on the OCM memory address map and register settings is available in
Chapter 29 of the Zynq-7000 All Programmable SoC Technical Reference Manual [6]

10.3.3. Memory Map

Zynq-7000 AP SoCs have support for an address space of 4 GB. The memory map is
provided in Table 10.9

Table 10.9: Zynq-7000 SoC memory map [9]

Start Address Size Description

0x0000_0000 1024 MB DDR DRAM and OCM

0x4000_0000 1024 MB PL AXI slave port 0

0x8000_0000 1024 MB PL AXI slave port 1

0xE000_0000 256 MB IOP devices

0xF000_0000 128 MB Reserved

0xF800_0000 32 MB Programmable registers access via AMBA APB

0xFA00_0000 32 MB Reserved

0xFC00_0000 64 MB — 256 KB Quad-SPI linear address base (except top 256 KB
which is OCM), 64 MB reserved, only 32 MB is
currently supported

0xFFFC_0000 256 KB OCM when mapped to high address space
210

CHAPTER 10: Zynq System-on-Chip Design Overview
10.4. Interrupts

The interrupt structure of Zynq devices is closely linked with the dual-core ARM A9
based PS, which also incorporates a GIC PL390 interrupt controller. This section describes
the functions of the interrupt controller and the system-level interrupt environment, of
which an overview is provided in Figure 10.6

The rest of this section will cover a number of key topics, including:

• Functionality of the GIC

• Private, shared and software interrupts

• Interrupt prioritisation and handling

Interrupt

Interface

Execution

Unit

Private Interrupt

Registers

ARM Core 0

Interrupt

Interface

Execution

Unit

Private Interrupt

Registers

ARM Core 1

Interrupt Control

and

Status RegistersPrivate Bus

IRQ/FIQ IRQ/FIQ

Private

Peripheral

Interrupts

(PPI)

CPU 0

Private

Private

Peripheral

Interrupts

(PPI)

CPU 1

Private

Software

Generated

Interrupts

(SGI)

Software

Interrupts

Shared Peripheral

Interrupts (SPI)

Shared Interrupts

ARM 0

ARM 1

ARM 0 ARM 1 ARM 0

ARM 1

Generic Interrupt

Controller (GIC)
(Classify, enable, prioritise & distribute)

55
16 each 60

Programmable

Logic (PL)

WFI, WFE and

Event Indicators

PS I/O

Peripherals (IOP)

4460

KEY:

Interrupt (IRQ)

Fast Interrupt (FIQ)

Wait for Interrupt (WFI)

Wait for Event (WFE)

Figure 10.6: System-level interrupt environment
211

CHAPTER 10: Zynq System-on-Chip Design Overview
10.4.1. Interrupt Signals

The PS IOP interrupt signals are routed to the PL and are asserted asynchronously to the
FCLK clocks. Going the other way, the PL can assert up to 20 interrupts asynchronously to
the PS, with up to 16 of the interrupt signals mapped to the interrupt controller as a
peripheral interrupt. Each interrupt signal is mapped to one or both of the CPUs and is set
to a priority level. The four remaining PL interrupt signals are inverted and directly routed
to the nIRQ and nFIQ signals of the Private Peripheral Interrupt (PPI) unit of the interrupt
controller. Each CPU has its own nIRQ and nFIQ signal. The relevant interrupt signals
between the PS and PL are summarised in Table 10.10 [5].

10.4.2. Generic Interrupt Controller (GIC)

The general interrupt controller is based on the non-vectored ARM General Interrupt
Controller Architecture v1.0.

The controller manages interrupts that are sent to the CPUs from the PS and the PL. It is
a centralised resource, and is capable of enabling, disabling, masking and prioritising
interrupt sources, sending them to the appropriate CPU(s) in a programmed manner as the
next interrupt is accepted by the CPU interface [5]. The controller also supports security
extension for the implementation of a security-aware system [5].

GIC registers are accessed via the CPU private bus which ensures fast read/write
response times by avoiding bottlenecks and temporary blockages in the interconnect [5].

All interrupt sources are centralised by the interrupt distributor before the one with the
highest priority is dispatched to the individual CPUs. The GIC also ensures that an

Table 10.10: PL interrupt signals [5]

Type PL Signal
Name I/O Destination

PL to PS
Interrupts

IRQF2P[7:0] I SPI: Numbers [68:61]

IRQF2P[15:8] I SPI: Numbers [91:84]

PS to PL
Interrupts

IRQP2F[19:16] I PPI: nFIQ, nIRQ (both CPUs)

IRQP2F[27:0] O Programmable logic. These signals are
received from the I/O peripherals and are for-
warded to the interrupt controller. They are
also provided as outputs to the PL.
212

CHAPTER 10: Zynq System-on-Chip Design Overview
interrupt that targets more than one CPU can only be taken by a single CPU at a time. A
unique interrupt ID number identifies each interrupt source, and have their own config-
urable priority and list of targeted CPUs [5].

Further information on the GIC can be obtained from the ARM Generic Interrupt
Controller Architecture Specification [1].

10.4.3. Interrupt Sources

An overview of the individual interrupt sources is provided in this section, covering:

• CPU Private Peripheral Interrupts (PPIs)

• PL and PS Shared Peripheral Interrupts (SPIs)

• Software Generated Interrupts (SGIs)

A block diagram of the interrupt sources is outlined in Figure 10.7.

Shared

Peripheral

Interrupts (SPI)

Programmable

Logic (PL)

Input/Output

Peripherals (IOPs)

Software

Generated

Interrupts

(SGI)
CPU 0
CPU 1

n
IR
Q

n
F
IQ

n
IR
Q

n
F
IQ

CPU 1

Interface

CPU 1 Timer

 and AWDT

PL FIQ1, IRQ1

Private

Peripheral

Interrupts (PPI)

CPU 1

CPU 0 Timer

 and AWDT

PL FIQ0, IRQ0

Private

Peripheral

Interrupts (PPI)

CPU 0

SGI Distributor

System

Watchdog

Timer

nFIQ
nIRQn

IR
Q

n
F
IQ

n
IR
Q

n
F
IQ

CPU 0

Interface

nFIQ
nIRQ

Interrupt Control Distributor (ICD)

CPU 1

Distributor

CPU 0

Distributor

Figure 10.7: Interrupt controller block diagram
213

CHAPTER 10: Zynq System-on-Chip Design Overview
CPU Private Peripheral Interrupts (PPI)

Each CPU core connects to a private set of five peripheral interrupts, which are summa-
rised in Table 10.11 [5].

The GIC must be programmed to accommodate the fact that all PPI sensitivity types are
fixed by the requesting sources and cannot be changed. These registers are not
programmed by the Boot ROM, and therefore the GIC must be programmed to accom-
modate these sensitivity types by the SDK device drivers [5].

It is worth noting that both the interrupt (IRQ) and fast interrupt (FIQ) signals from the
PL are inverted when transferring to the PS, before being sent to the interrupt controller.
The signals are therefore active High in the PS at the PS-PL interface before being inverted
to active Low level in the PL.

Table 10.11: Private Peripheral Interrupts (PPI) [5]

IRQ ID
Name PPI

Type Description

26:16 Reserved ----- ---- Reserved

27 Global Timer 0 Rising Edge Global timer

28 nFIQ 1 Active Low level in PL
(Active High at PS-PL
interface)

Fast interrupt signal
from the PL
CPU0: IRQF2P[18]
CPU1: IRQF2P[19]

29 CPU Private Timer 2 Rising Edge Interrupt from pri-
vate CPU timer

30 AWDT{0, 1} 3 Rising edge Private watchdog
timer for each CPU

31 nIRQ 4 Active Low level in PL
(Active High at PS-PL
interface)

Interrupt signal
from the PL
CPU0: IRQF2P[16]
CPU1: IRQF2P[17]
214

CHAPTER 10: Zynq System-on-Chip Design Overview
Shared Peripheral Interrupts (SPI)

A group of roughly 60 interrupts from various modules can be routed to the PL or one or
both of the CPUs. The prioritisation and reception of those of the interrupts that are
destined for the CPUs is managed by the interrupt controller [5].

As with PPIs, the interrupt sensitivity types of SPIs are fixed by the requesting sources
and cannot be changed. The SDK drivers must program the GIC to accommodate the
sensitivity types.

The various SPI interrupts are summarised in Table 10.12.

Table 10.12: PS and PL Shared Peripheral Interrupts (SPI) [5]

Source Interrupt
Name

IRQ
ID# Status Bits Required

Type

PS-PL
Signal
Name

I/O

APU

CPU 1, 0 (L2,
TLB, BTAC) 33:32 spi_status_0[1:0] Rising Edge ---- ----

L2 Cache 34 spi_status_0[2] High Level ---- ----

OCM 35 spi_status_0[3] High Level ---- ----

Reserved ---- 36 spi_status_0[4] ---- ---- ----

PMU PMU [1,0] 38, 37 spi_status_0[6:5] High Level ---- ----

XADC XADC spi_status_0[7] High Level ---- ----

DVI DVI 40 spi_status_0[8] High Level ---- ----

SWDT SWDT 41 spi_status_0[9] Rising Edge ---- ----

Timer TTC 0 43:42 spi_status_0[11:10] High Level ---- ----

Reserved ---- 44 spi_status_0[12] ---- ---- ----

DMAC
DMAC Abort 45 spi_status_0[13] High Level IRQP2F[28] O

DMAC [3:0] 49:46 spi_status_0[17:14] High Level IRQP2F[23:20] O

Memory
SMC 50 spi_status_0[18] High Level IRQP2F[19] O

Quad SPI 51 spi_status_0[19] High Level IRQP2F[18] O

Debug CTI ---- ---- High Level IRQP2F[17] O

IOP GPIO 52 spi_status_0[20] High Level IRQP2F[16] O
215

CHAPTER 10: Zynq System-on-Chip Design Overview
IOP

USB 0 53 spi_status_0[21] High Level IRQP2F[15] O

Ethernet 0 54 spi_status_0[22] Rising Edge IRQP2F[14] O

Ethernet 0
Wakeup 55 spi_status_0[23] Rising Edge IRQP2F[13] O

SDIO 0 56 spi_status_0[24] High Level IRQP2F[12] O

I2C 0 57 spi_status_0[25] High Level IRQP2F[11] O

SPI 0 58 spi_status_0[26] High Level IRQP2F[10] O

UART 0 59 spi_status_0[27] High Level IRQP2F[9] O

CAN 0 60 spi_status_0[28] High Level IRQP2F[8] O

PL
FPGA [2:0] 63:61 spi_status_0[31:29] High Level IRQF2P[2:0] I

FPGA [7:3] 68:64 spi_status_1[4:0] High Level IRQF2P[7:3] I

Timer TTC 1 71:69 spi_status_1[7:5] High Level ---- ----

DMAC DMAC [7:4] 75:72 spi_status_1[11:8] High Level IRQP2F[27:24] O

IOP

USB 1 76 spi_status_1[12] Rising Edge IRQP2F[7] O

Ethernet 1 77 spi_status_1[13] Rising Edge IRQP2F[6] O

Ethernet 1
Wakeup 78 spi_status_1[14] High Level IRQP2F[5] O

SDIO 1 79 spi_status_1[15] High Level IRQP2F[4] O

I2C 1 80 spi_status_1[16] High Level IRQP2F[3] O

SPI 1 81 spi_status_1[17] High Level IRQP2F[2] O

UART 1 82 spi_status_1[18] High Level IRQP2F[1] O

CAN 1 83 spi_status_1[19] High Level IRQP2F[0] O

PL FPGA [15:8] 91:84 spi_status_1[27:20] High Level IRQF2P[15:8] I

SCU Parity 92 spi_status_1[28] Rising Edge ---- ----

Reserved ---- 95:93 spi_status_1[31:29] ---- ---- ----

Table 10.12: PS and PL Shared Peripheral Interrupts (SPI) [5]

Source Interrupt
Name

IRQ
ID# Status Bits Required

Type

PS-PL
Signal
Name

I/O
216

CHAPTER 10: Zynq System-on-Chip Design Overview
Software Generated Interrupts (SGI)

Each CPU core is capable of interrupting both CPUs, the other CPU or itself using a SGI.
There are 16 SGIs, which are summarised in Table 10.13 [5]. An SGI is generated by
writing the SGI interrupt number to the Software Generated Interrupts Register
(ICDSGIR) and specifying the target CPU, or CPUs. The write is carried out on the CPU
private bus of the source CPU. A separate set of SGI registers is available to each CPU,
allowing them to generate one or more of the 16 software generated interrupts. The inter-
rupts are cleared by either reading the Interrupt Acknowledge Register (ICCIAR) or by
writing a value of ‘1’ to the corresponding bits of the Interrupt Clear-Pending Register
(ICDICPR) [5].

All SGIs are edge triggered, and the sensitivity types for them are fixed and cannot be
changed.

10.4.4. Interrupt Prioritisation and Handling

This section will briefly touch upon the way in which interrupts are prioritised and
handled by Zynq devices.

Interrupt Prioritisation

All interrupt requests, whether they are PPI, SGI or SPI, are assigned a unique ID
number which is used by the interrupt controller to arbitrate. A list of pending interrupts
for each CPU is held by the interrupt distributor, which will select the highest priority
interrupt before asserting it to the CPU interface. If two interrupts of equal priority arrive
at the same time, the one with the lowest interrupt ID is issued first [5].

 Prioritisation logic exists for each CPU, enabling the highest priority interrupt to be
selected for each CPU. The central list of interrupts, processors and activation information
is held by the interrupt distributor which is then responsible for triggering software inter-

Table 10.13: Software Generated Interrupts (SGI) [5]

IRQ ID # Name SGI # Type Description

0 Software 0 0 Rising Edge A set of 16 interrupt sources that are
private to each CPU can be routed
to up to 16 common interrupt desti-
nations. Each destination can be one
or more CPUs.

1 Software 1 1 Rising Edge

⁞ ⁞ ⁞ ⁞

15 Software 15 ---- Rising Edge
217

CHAPTER 10: Zynq System-on-Chip Design Overview
rupts to the CPUs [5]. In order to provide a separate copy for each processor, the SGI and
PPI distributor registers are banked. Logic ensures that an interrupt targeting more than
one CPU can only be taken by one CPU at a time [5].

Upon transmission of the highest pending interrupt to the CPU interfaces, the interrupt
distributor will receive back an acknowledgement from the CPU allowing it to change the
status of the corresponding interrupt. The interrupt can only be ended by the CPU that
acknowledges the interrupt [5].

Interrupt Handling

The interrupt distributor operates a state machine for each supported interrupt on each
CPU interrupt. The possible interrupt states are [1]:

• inactive

• pending

• active

• active and pending

When the interrupt controller receives an interrupt request, it will mark the state of that
request as pending. The regeneration of a pending interrupt does not affect the state of that
interrupt [1]. Once the interrupt has been acknowledged, the status changes from pending
to active and pending if the pending state of the interrupt persists after the interrupt has
become active, or the interrupt is generated again. Otherwise, the status is changed from
pending to active [1]. When the interrupt controller receives confirmation from the
processor that the interrupt handling has been completed, the status of the interrupt is
changed from active to inactive, provided that the interrupt has not been generated again.
Otherwise, it is changed from pending and active to pending.

Further information on the handling of interrupts by the GIC is covered in Chapter 3
Interrupt Handling and Prioritization of the ARM Generic Interrupt Controller Archi-
tecture Specification [1]

10.4.5. Further Reading

It is impossible to cover all aspects of interrupts within the confines of this chapter; the
ARM specification of the GIC is over 150 pages long! With that being the case, a few of the
topics that can be found in the ARM Generic Interrupt Controller Architecture Specifi-
cation [1] are highlighted below:
218

CHAPTER 10: Zynq System-on-Chip Design Overview
• GIC security extensions

• Interrupt handling state machines

• Programmers model interface to the GIC

• Details of GIC registers

• Distributor and CPU interfaces

10.5. Chapter Review

In this chapter, some of the features of the Zynq SoC have been examined in detail. The
methods of interfacing between the L1 cache and the PS have been introduced and
discussed, along with relevant signals. Specific attention was given to the ACP access point
which provides cache-coherent data transfer and requests between the PL and the PS. The
interrupt interface between the PL and the PS was also introduced.

The AXI interconnect system, as well as the various datapath and interconnect switches,
were discussed and the available interconnect masters and slaves identified. Further infor-
mation on the AXI interconnect can be found in Chapter 19.

The final sections of the chapter detail the various memory interfaces and controllers
that feature in the Zynq SoC, as well as the interrupt systems.

10.6. References

NOTE: All URLs last accessed June 2014.

[1] ARM, “ARM Generic Interrupt Controller: Architecture Specification”, v1.0, September 2008.
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048a/IHI0048A_gic_architecture_spec_v1_0.pdf

[2] Xilinx, Inc, “Application Processing Unit” in Zynq-7000 All Programmable SoC Technical Reference Manual,
UG585, v1.5, February 2014, pp. 60-111.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[3] Xilinx, Inc, “DDR Memory Controller” in Zynq-7000 All Programmable SoC Technical Reference Manual,
UG585, v1.5, February 2014, pp. 278-314.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[4] Xilinx, Inc, “Interconnect” in Zynq-7000 All Programmable SoC Technical Reference Manual, UG585, v1.5,
February 2014, pp. 117-146.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
219

CHAPTER 10: Zynq System-on-Chip Design Overview
[5] Xilinx, Inc, “Interrupts” in Zynq-7000 All Programmable SoC Technical Reference Manual, UG585, v1.5,
February 2014, pp. 213-224.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[6] Xilinx, Inc, “On-Chip Memory (OCM)” in Zynq-7000 All Programmable SoC Technical Reference Manual,
UG585, v1.5, February 2014, pp. 707-717.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[7] Xilinx, Inc, “Signals, Interfaces and Pins” in Zynq-7000 All Programmable SoC Technical Reference Manual,
UG585, v1.5, February 2014, pp. 42-59.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[8] Xilinx, Inc, “Static Memory Controller” in Zynq-7000 All Programmable SoC Technical Reference Manual,
UG585, v1.5, February 2014, pp. 315-324.
Available: http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[9] Xilinx, Inc, “Zynq-7000 All Programmable SoC Overview”, DS190, v1.6, December 2013.
Available: http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
220

11

Zynq System-on-Chip

Development

n this chapter we will examine all aspects of the Zynq design flow that concentrate on
software development. We will take a closer look at certain aspects of software devel-
opment and partitioning for Zynq.

The various sections of this chapter explore the important concepts of hardware/
software partitioning, Zynq software development and profiling. This ties together the
software development cycle on Zynq devices from the early conception stages, through to
those of testing and verification.

11.1. Hardware/Software Partitioning

Hardware/software partitioning, also known as hardware/software co-design, is an
important stage in the design of embedded systems and, if well executed, can result in a
significant improvement in system performance. The process of hardware/software parti-
tioning, as the name implies, involves deciding which system components should be imple-
mented in hardware and which should be implemented in software. The impetus behind
the partitioning process is that hardware components, such as those which reside in FPGA
programmable logic fabric, are typically much faster due to the parallel processing nature
of FPGA devices. However, it also tends to be more expensive. Software components, on
the other hand, implemented on a GPP or a microprocessor, are cheaper to both create and

I

221

CHAPTER 11: Zynq System-on-Chip Development
maintain, but are also slower due to the inherent sequential processing. In order to achieve
a good trade-off between performance and cost, high-performance components can be
implemented in hardware, while less intensive processes can be implemented in software.

Traditionally the partitioning process was carried out manually by the systems designer,
who would decide which of the design modules would be implemented in hardware, and
which could be realised as software. More recently, a number of algorithms and techniques
have been developed which enable the automation of the partitioning decision process for
a variety of different design environments [1]. The advent of techniques such as HLS also
had a significant effect on the partitioning process, allowing software algorithms to be
directly converted into RTL for hardware implementation.

An overview of hardware/software partitioning is provided in Figure 11.1.

FPGA programmable logic fabric is a good target for the implementation of problems
which can be efficiently divided into multiple, parallel tasks. Due to the inherent parallel
execution of the programmable logic, multiple operations can be processed simultaneously
to calculate the final result in a shorter time than if processed sequentially. Example appli-
cations for FPGA implementation include digital filtering operations, beamforming and

Software

(PS)

Module

1

Module

2

Module

6

Hardware

(PL)

Module

3

Module

4

Module

5

Module

1

Module

3

Module

5

Module

4

Module

2

Module

6

System Functionality

Figure 11.1: Hardware/software partitioning overview
222

CHAPTER 11: Zynq System-on-Chip Development
image processing. Traditionally these tasks are repetitive and quite static in nature. On the
other hand, problems exist which are more dynamic and unpredictable, and these are
better suited to implementation on a processor based system.

Another factor to consider when deciding whether a process should be implemented in
hardware or software, is the number format which will be used. Traditionally, processors
have had much better support for floating point calculations due to specially developed
vector math engines and dedicated floating point units. FPGAs can support floating point
calculations, but a large amount of logic is required to implement them. This is similarly
true of high-precision fixed point calculations. Now, with the increased size of FPGAs,
high-precision calculations are becoming more common as logic footprint required for
their implementation, with respect to the size of the device, reduces. Therefore, if an appli-
cation requires high-precision floating point calculations, it is best suited to either a
processor-based implementation, or that of a large scale FPGA.

It is important to properly exploit the parallel execution of the programmable logic for
the implementation of strict timing-driven functions. Figure 11.2 demonstrates the
advantage of parallel hardware execution. Whereas the software execution would require
12 clock cycles (sequential execution) to produce the output, G, the parallel implemen-
tation would only require 2 clock cycles (parallel execution) to produce the same result. If,
however, the inputs and outputs of the operation are to be transmitted between the PS and

E = A × B
F = C ÷ D
G = E + F

× ÷

+

A B C D

E F

G

load A
load B
multiply
store E
load C
load D
divide
store F
load E
load F
add
store G

Hardware implementation
(2 clock cycles)

Software implementation
(12 clock cycles)

Operation to be
implemented

Figure 11.2: Parallel vs sequential implementation
223

CHAPTER 11: Zynq System-on-Chip Development
the PL, there will be a communication overhead. With the closely coupled PS and PL of the
Zynq-7000 SoCs and the high-speed interconnects, this is less of a problem.

11.2. Profiling

Profiling is a form of program analysis that is used to aid the optimisation of a software
application. It is used to measure a number of properties of application code, including:

• Memory usage

• Execution time of function calls

• Frequency of function calls

• Instruction usage

Profiling can be performed statically (without executing the software program) or
dynamically (performed while the software application is running on a physical or virtual
processor). Static profiling generally performed by analysing the source code, or sometimes
the object code, whereas dynamic profiling is an intrusive process whereby the execution of
a program on a processor is interrupted to gather information.

 The use of profiling allows you to identify bottlenecks in the code execution that may be
a result of inefficient code, or poor communication between function interactions with a
module in the PL or another function within software. It could also be the case that the
algorithm or routine may be inherently more suitable for implementation in hardware.
Once identified, the bottlenecks can be optimised by rewriting the original software
function or by moving it to the PL for acceleration. Alternatively, part of the function could
remain in software, while the problematic section could be moved to hardware.

Profiling is also useful when analysing large programs which are too big to be analysed
by reading the source code. The use of profiling can help you spot bugs which you may
otherwise not have noticed.
224

CHAPTER 11: Zynq System-on-Chip Development
The execution flow of various functions is shown in Figure 11.3, with the number of
clock cycles required to execute a given function highlighted.

By profiling a program, and thus determining the number of clock cycles required to
execute each individual function, you can determine whether a function needs optimised.
Having written a software function, the engineer should have a good idea of roughly how
long a function should take to execute on a given PS. This estimate can be compared to the
results of the profiling and large discrepancies investigated. An example of the profiling
output for the execution flow in Figure 11.3 is provided in Figure 11.4.

Profiler Interrupt
Signals

Program Execution

Function

A

Function

B

Function

C

Function

C

Fcn

D

Fcn

F

Fcn

E

Fcn

G

Function

A

Timer

Figure 11.3: Profiling

Execution Time

(Clock Cycles)

1 2 4 6

Calls

Figure 11.4: Example profiling results with reference to Figure 11.3
225

CHAPTER 11: Zynq System-on-Chip Development
11.3. Software Development Tools

Software application development flows for the Zynq-7000 AP SoC devices allow the
user to create software applications using a unified set of Xilinx tools, as well as utilising a
wide range of tools from third-party vendors which target the ARM Cortex-A9 processors
[2]. Although this section will focus mainly on the Xilinx tools and tool flows, the
discussed concepts are broadly applicable to third-part tools. Those familiar with software
development will recognise familiar components such as the GNU compiler toolchain and
Eclipse-based IDE.

11.3.1. Software Tools

Xilinx provides design tools for the development and debugging of software applications
for Zynq-7000 AP SoC devices. Provided software includes [2]:

• A software IDE - This is an integrated design environment for the development of
software applications for execution on the PS.

• GNU-based compiler toolchain - Used to convert the source code of your appli-
cation into an executable program. It is a collection of programming tools based on
those produced by the GNU Project, including a GCC compiler, GNU Debugger
(GDB) debugger, utilities and libraries.

• JTAG debugger - Allows for hardware debugging of the software application whilst
running on the target device via a JTAG connection.

• Various other associated utilities

The provided software tools allow the user to develop both bare-metal applications,
which run directly on the Zynq-7000 device without an OS, and Linux applications.

Third-party software tools are also available which provide support for the Cortex-A9
processors. They include [2]:

• Software IDEs

• Compiler toolchains

• Debug and trace tools

• Embedded OS and software libraries

• Simulators
226

CHAPTER 11: Zynq System-on-Chip Development
• Models and virtual prototyping tools

The level of direct support and integration varies for Zynq-7000 AP SoC devices by
third-party solutions. Tool support for targeting Linux Kernel development is not provided
by Xilinx, but is provided by third-party vendors.

11.3.2. Hardware Configuration Tools

Xilinx provides two hardware configurations tools which provide support for the Zynq-
7000 AP SoC devices. These are:

• Vivado IDE Design Suite IP Integrator - IP integrator provides a graphical
interface which allows the user to create a block diagram of a system which incorpo-
rates both the PL and the PS.

• ISE Design Suite Embedded Development Kit (EDK) Xilinx Platform Studio
(XPS) - XPS captures information about the PS and any peripherals, including
configuration settings, register memory address map and hardware bitstream for the
initialisation of the PL.

Vivado IP Integrator

Vivado IDE Design Suite IP Integrator provides a block-based design environment for
the construction of Zynq-7000 AP SoC systems. The block diagram allows you to configure
both PS and PL components. Configuration information is stored in an XML file and other
INIT files which are then used by software design tools to infer compiler parameters,
define JTAG settings, create and configure BSP libraries and automate other hardware
related operations [2].

More information on Vivado IP Integrator can be found in Chapter 18 — IP Reuse and
Integration.

Xilinx Platform Studio

ISE Design Suite EDK Xilinx Platform Studio stores configuration information in an
XML file and other INIT files which are then used by software design tools to infer
compiler parameters, define JTAG settings, create and configure BSP libraries, program the
PL and automate other hardware related operations [2].
227

CHAPTER 11: Zynq System-on-Chip Development
11.3.3. Software Development Kit (SDK)

The Xilinx SDK provides an environment whereby fully functioning software applica-
tions can be created, compiled and debugged all within one tool. The SDK includes GNU-
based compiler toolchain (GCC compiler, GDB debugger, utilities and libraries), JTAG
debugger, flash programmer, drivers for Xilinx IPs and bare-metal BSPs and middleware
libraries for application-specific functions [2]. All of the features that have been mentioned
are accessible from within the Eclipse-based IDE, which incorporates the C/C++ Devel-
opment Kit (CDK) [2].

Features of the SDK include [2]:

• Project management

• Error navigation

• C/C++ code editing and compilation environment

• Application build configuration and automatic makefile generation

• Integrated environment for debugging and profiling embedded targets

• Additional functionality through third-party plug-ins, such as source code and
version control

The SDK is available as part of the Xilinx Vivado IDE, the ISE Design Suite and EDK, or
as a standalone application. An application template for creating a First-Stage Boot Loader
(FSBL), as well as a graphical interface for building a boot image, is also included in the
SDK. Documentation and reference material is available directly from the SDK help system
[2].

11.3.4. Microprocessor Debugger

The XMD is a command line driven JTAG debugger that can be used to download,
debug and verify programs. It includes a Tcl interface that supports scripting for repetition
of tasks. XMD serves as the GDB server for GDB and SDK when debugging bare-metal
applications [2].

When debugging Linux applications, the SDK interacts with a GDB server running on
the target platform. Debuggers can connect to XMD running on the host computer or on a
remote machine running on the same network [2].
228

CHAPTER 11: Zynq System-on-Chip Development
11.3.5. Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain

In addition, the SDK also includes the Sourcery CodeBench Lite Edition for the Xilinx
Cortex-A9 compiler toolchain. This is used for Linux application and bare-metal
Embedded Application Binary Interface (EABI) development [2].

The Xilinx Sourcery CodeBench Lite Edition in the SDK comprises of identical GNU
tools, libraries and documentation as the standard editions, but with the following
additions [2]:

• Default toolchain settings for the Xilinx Cortex-A9 processors

• Bare-metal (EABI) start up support and default linker scripts for the Xilinx Cortex-
A9 processors

• Vector Floating Point (VFP) and NEON optimised libraries

11.3.6. Logic Analysers

Analysis tools allow you to analyse internal signals and ports of any custom logic which
is running in the PL. Two analysis tools are provided by Xilinx: ChipScope™ Pro Analyzer
and Vivado Logic Analyzer. Both tools perform similar functions, but operate within
different environments; ChipScope Pro Analyzer is a standalone application whereas
Vivado Lab Tool operates within the Vivado IDE.

ChipScope Pro comprises of two tools: ChipScope Pro Core Inserter and ChipScope Pro
Analyzer. Analyzer inserts logic analyzer, system analyzer and virtual I/O cores into the PL
custom logic designs, while Analyzer allows you to analyse and view the internal signals.
All signals are captured at the operating speed of the PL and can be displayed and analysed
in the ChipScope debugging tools. Capturing of signal data, and software debugger break-
points, can be triggered by events in the custom logic [2].

Vivado Logic Analyzer operates in a similar manner to ChipScope, but accessed from
within the Vivado IDE rather than as a standalone application [2].

11.3.7. System Generator for DSP

System Generator for DSP is a block-based development environment that allows users
to create DSP hardware co-processor designs within the MATLAB/Simulink environment.
It supports rapid development and simulation of DSP hardware, whilst enabling automated
generation of the co-processor which reduces the overall system development time. The
co-debug feature of the SDK allows users to run and debug programs running on the
229

CHAPTER 11: Zynq System-on-Chip Development
processor while retaining control over the hardware under development in System
Generator [2].

11.4. Chapter Review

In this chapter the concept of hardware/software partitioning has been introduced,
whereby the system components are divided between software (running on the PS) and
hardware (implemented in the PL). The process of profiling was also discussed, which can
aid with identifying software-based bottlenecks within the system. Such software functions
could benefit from hardware acceleration, and thus implementation in the PL. The Xilinx
Vivado HLS tool can aid with the transition from software to hardware by automating the
conversion from C/C++/SystemC algorithms to RTL code.

The Xilinx tools provided for Zynq software development have also been introduced,
both in terms of Linux and baremetal development. The hardware configuration tools,
such as Vivado IDE IP Integrator and Xilinx Platform Studio were also introduced.

11.5. References

NOTE: All URLs last accessed June 2014.

[1] M. López-Vallejo and J. C. López, “On the Hardware-Software Partitioning Problem: System Modeling and
Partitioning Techniques” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 8,
no. 3, pp. 269-297, July 2003.

[2] Xilinx, Inc, “Zynq-7000 All Programmable SoC Software Developers Guide”, UG821, v8.0, April 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
230

12

Next Steps in Zynq SoC

Design

his practical chapter and its corresponding tutorial seeks to build on the basics
learned in the previous chapter, expanding on existing skills in developing a Zynq system.

In particular, this chapter will focus on adding further IP to the basic Zynq system, using
IP Integrator to handle interrupts generated by a timer and the GPIO on the Zedboard. You
will be guided through the process of connecting this additional IP to the system and
details of the connections made explained at each stage.

Following generation of a hardware design, it will be exported to the SDK to develop a
software application that makes clear use of interrupts and effectively conveys the function.

12.1. Prerequisites

Before beginning this exercise it is recommended you have read up to and including
Chapter 10, entitled Zynq System-On-Chip Development, and have successfully completed
the previous practical exercise First Designs on Zynq as this exercise will expand upon the
previously created Zynq system.

T

231

CHAPTER 12: Next Steps in Zynq SoC Design
12.2. Aims and Outcomes

The aim of this practical exercise is to introduce adding further IP to a basic Zynq
system and making the appropriate connections. To achieve this, a simple design
constructed and targeted to the Zedboard will have additional IP added and connected,
before creating a software application that clearly exhibits the operation of the system.

After completion of this tutorial you will be able to:

• Add additional IP to an existing, basic Zynq hardware project.

• Be able to configure the IP to utilise interrupts.

• Amend your design to include multiple sources of interrupts.

• Use an Interrupt Controller to connect hardware interrupts between the IP and the
Zynq PS.

• Create more advanced software applications which will execute on the Zynq PL,
utilising interrupts and several types of IP.

The main aim of this tutorial is to extend basic skills in developing systems for Zynq,
further familiarising the reader with the available software tools and flow, as well as the
creation of more complex software applications.

12.3. Overview of Exercise 2A

The first practical exercise is identical to that of the previous tutorial in the creation of a
simple Zynq system for the ZedBoard. This is repeated to develop familiarisation with the
procedure.

Exercise 2A is available on the website: www.zynqbook.com

12.4. Overview of Exercise 2B

This practical exercise involves the expansion of the previously created hardware project
targeting the ZedBoard in Vivado IDE. The required steps are:

1. Add additional IP (GPIO push buttons) to generate hardware interrupts.

2. Connect hardware interrupts to the interrupt controller in the Zynq PS.
232

CHAPTER 12: Next Steps in Zynq SoC Design
3. Generate HDL files for the hardware design and create a bitstream hardware
description file.

4. An overview of the hardware design that will be created in this exercise is provided
in Figure 12.1

With our hardware design from Exercise 1 augmented to include additional IP, the next
exercise will focus on the creation of a software application that reveals the operation of a
single interrupt in a Zynq system.

Exercise 2B is available on the website: www.zynqbook.com

12.5. Overview of Exercise 2C

Following creation of a hardware design in Exercise 2B, the next step is to export the
design to the Xilinx SDK. A software application will then developed, that uses presses of
the push buttons to generate an interrupt. This interrupt is handled by the AXI interrupt
controller and passed to the Zynq PS. This will increase the value of a variable, creating a
counter, the value of which will be displayed in binary on the LEDs by passing and writing
the variable value to the AXI GPIO instance,

 The steps involved in this Exercise are:

5. Export the finalised hardware design to the SDK.

LEDs

Zynq

PS
AXI GPIO

Zynq PL

Development Board

AXI Connection

AXI GPIO

Push

Buttons

Interrupt

Controller

Figure 12.1: Exercise 2B Zynq Hardware Design
233

CHAPTER 12: Next Steps in Zynq SoC Design
6. Create a simple software application that uses interrupts from the push buttons to
increment a counter, the value of which is displayed on the LEDs in binary.

7. Program the FPGA and confirm that the software application operates as expected,
showing the function of interrupts in a Zynq system.

Exercise 2C is available on the website: www.zynqbook.com

12.6. Overview of Exercise 2D

In this final exercise of the tutorial, we will expand the hardware design created and
tested in Exercises 2B and 2C to include a further source of interrupts. An AXI Timer will
be added to generate an interrupt and increment the counter on expiration. Appropriate
connections will also be made to the interrupt controller. Finally, the augmented hardware
design will be exported to the SDK and the software application from the previous exercise
modified to include the new functionality.

The steps involved in this Exercise are:

1. Open the previously created project in Vivado IDE.

2. Add an AXI Timer source using IP Integrator.

3. Make appropriate connections between the timer and the hardware and interrupt
controller in the PS.

4. Generate HDL files for the hardware design and create a bitstream hardware
description file.

5. An overview of the hardware design that will be created in this exercise is provided
in Figure 12.2

6. Export the finalised hardware design to the SDK.

7. Modify the software application of the previous exercise to include new interrupt
functionality.
234

CHAPTER 12: Next Steps in Zynq SoC Design
8. Program the FPGA and execute the software application on the hardware, confirm-
ing that it operates as expected.

Exercise 2D is available on the website: www.zynqbook.com

12.7. Possible Extensions

Having completed Exercise 2D, there are some possible variations you can introduce to
personalise the developed system. For example, you could:

• Alter the timer expiration value or push button incremental values.

• Add a further GPIO controller to the hardware design which connects to the DIP
switches on the ZedBoard. Use the GPIO driver functions to take input from the DIP
switches to control the following options:

- Pause or resume the timer operation

- Whether the counter increments or decrements

- Selection between different timer expiration values

LEDs

Zynq

PS
AXI GPIO

Zynq PL

Development Board

AXI Connection

AXI GPIO

Push

Buttons

AXI

Timer

Interrupt

Controller

Figure 12.2: Exercise 2D Zynq Hardware Design
235

CHAPTER 12: Next Steps in Zynq SoC Design
12.8. What Next?

The next few chapters of this book will focus on the creation of custom IP blocks and
abstracted system design using High Level Synthesis. These chapters will be accompanied
by relevant tutorial exercises.
236

13

IP Block Design

P plays a very important role in today’s FPGA and embedded system industry,
allowing system designers to pick-and-choose from a wide array of pre-developed design
blocks. This has a number of advantages in terms of development time, as well as providing
guaranteed functionality without the need for extensive testing.

In this chapter we will take a look at what intellectual property means in terms of the
Zynq-7000 platform, the industry trends and what sources of IP are available. We will also
look at the Xilinx design flows that are available for the creation and maintenance of your
own IP catalogue.

13.1. Overview

A sensible starting point when dealing with IP is to define what we mean when we use
the terms “IP block” and “IP core”. An IP core, or IP block, is a hardware specification that
can be used to configure the logic resources of an FPGA or, for other silicon devices, physi-
cally manufacture an integrated circuit [3]. In terms of IP cores, there are two types: hard
IP cores and soft IP cores.

Soft IP cores allow the end user to customise the IP to a certain degree. The extent of the
customisation is dependent on the exact format that the IP is delivered in. The highest level
of customisation is available when the soft core is provided as synthesisable RTL, i.e. the
source HDL code is provided. For those familiar with software programming, this is equiv-
alent to a computer program being provided in high-level source code, such as C/C++. The
user is free to make modifications to the HDL source code before synthesising (or

I

237

CHAPTER 13: IP Block Design
compiling, to continue the software comparison) it for implementation on a target device.
It is worth noting that most IP vendors will offer no support or warranty for IP designs
which have been modified. In order to provide protection against modification, RTL can be
provided in encrypted source form. Although the source files can not be modified, the IP
can still be customised through the use of parameters.

Another format which soft cores can be provided in, is as a gate-level netlist. This means
that the IP vendor has partially synthesised the individual IP component and will provide
you with a logic gate implementation of the IP’s functionality. This, although still custom-
isable, makes any changes to the functionality of the IP harder to implement. As such, IP
delivered as a netlist provides the IP vendor with a certain degree of protection from
revealing the underlying algorithms and processes. This is somewhat analogous to a
software developer compiling the C source code and providing an assembly code listing;
the code is still modifiable, but it must be done at a lower level.

Both of these IP delivery methods are considered to be soft as they allow the user to
control the synthesis, place and route design flow when targeting the end device. Therefore,
ultimate control over the placement of the IP functionality, and the amount of hardware
resources used on the target device lies with the end user.

Hard IP cores, on the other hand, are provided in formats that permit no realistic
method of modification by the end user, and in some cases the functionality of the IP is
realised in the silicon of a device at manufacture.

One method of delivery for hard IP which is targeted at FPGA/ASIC implementation, is
to provide a design which has already undergone full synthesis and place and route design
flows. This is also sometimes referred to as firm IP. As the IP has already undergone the
place and route stage of the design flow, each individual IP must be targeted at a specific
end devices, or family of devices, and cannot be easily ported to another device. There is
also the disadvantage that a specific area of the device must be used for the IP implemen-
tation. Although this has the disadvantage that the functionality of the IP cannot be
customised in any way, it also brings with it the advantage that there is a high level of
predictability in terms of timing performance and required hardware area.

Another method of delivery for the implementation of hard IP in silicon is to provide a
transistor-layout. This is a format which is only compatible with the process design rules of
a specific foundry, and therefore hard IP delivered for use in one foundry cannot be used in
another without undergoing a difficult porting process. Some larger foundry operators
even go as far as to provide hard IP cores which specifically target their own foundry
process design rules in order to ensure that customers must use their services. This form of
hard IP delivery is not applicable to FPGAs.
238

CHAPTER 13: IP Block Design
Xilinx provides an extensive catalogue of soft IP cores for the Zynq-7000 AP family
which are optimised to provide efficiency in terms of both performance and hardware area.
Functionality ranges from building blocks, such as FIFOs and arithmetic operators, all the
way up to fully functional processor blocks, such as the MicroBlaze processor core.

 Third-party IP is also available, both commercially and from the open-source
community. Third-party IP comes in two forms: vendor-specific and generic. Vendor-
specific IP should require little-to-no modification to integrate with your chosen Zynq
device. Generic IP, however, may require modifications in order to make them conform
with certain HDL naming conventions.

The final option for obtaining IP for your design is to create it yourself. The traditional
method of IP generation is for it to be developed in HDLs, such as VHDL or Verilog. More
recently, other methods of IP creation have been introduced to the Xilinx tool suite, such as
System Generator model-based design or Vivado HLS. Other third-party tools also exist.

13.2. Industry Trends and Philosophy

In recent years, with the demand for more complex SoCs growing steadily, system
designers are being forced to incorporate more and more IP into their products. With the
more complex systems, this can be anything up to hundreds of individual IP cores. With
this many discrete pieces of IP in a single product, the ability to manage each block individ-
ually becomes much harder. The solution to this problem is to combine IP cores of a
similar key functionality to make a single IP subsystem.

Video Pixel
Correction

Noise
Reduction

Gamma
Correction

Colour
Correction

In

Video
Out

Video IP Subsystem

Figure 13.1: Video IP subsystem
239

CHAPTER 13: IP Block Design
A good example of an IP subsystem is a video processing pipeline, as shown in Figure
13.1. The individual video IP blocks — video in, pixel correction, noise reduction blocks
etc — are combined together to create a single video IP subsystem which can be integrated
into an embedded system design as a single IP block, rather than 6 individual IP cores.

13.3. IP Core Design Methods

Now that we have introduced the concept of IP cores and the types of IP that are
available, we will look at the various ways in which we can make our own IP. Xilinx provide
a number of tools which enable the creation of custom IP blocks for use in your own
embedded system designs.

13.3.1. HDL

Hardware description languages, such as VHDL and Verilog, are specialised
programming languages which are used to describe the operation and structure of digital
electronic circuits. The ability to create IP cores in HDL allows you the maximum control
over the functionality of your peripheral. If you already have an existing HDL design, the
ability to turn it into an IP core allows you to take advantage of the benefits of an IP module
without having to redesign or use a third-party equivalent.

When designing IP cores in HDL which are to communicate via an AXI interface, care
must be taken to conform to the Xilinx IP Packager peripheral signal naming conventions.
The top-level HDL file for an IP core defines the design interface and lists the default
connections and ports for the bus interface. It also lists any generics and specifies their
default values.

An example of the HDL peripheral source file hierarchy is provided in Figure 13.2.

<peripheral>_<version>.vhd
<peripheral>_<version>_<AXI_instance>.vhd

-- AXI interfacing signals provided here

-- Custom component declarations and instantiations
here

-- Custom user functionality here

Figure 13.2: HDL peripheral source file hierarchy

Where:
<peripheral> is the name of
the IP to be created.

<version> is the current
version, i.e. v1_0.

<AXI_instance> is the
AXI4 master (M) or slave
(S) interface instance, i.e.
M00_AXI or S00_AXI.
(There may be multiple
instances per peripheral).
240

CHAPTER 13: IP Block Design
The major drawback to creating IP in HDLs, is that complex designs require an experi-
enced engineer to produce an optimal solution. The process can be very time consuming in
terms of both development and testing, leading to greater time-to-market. However, when
looking for IP which requires very tight timing or hardware constraints, or if the function-
ality is complex, HDL is usually the best option.

13.3.2. System Generator

System Generator, typically used for DSP design, is a design tool that utilises the
Mathworks Simulink design platform for FPGA system design. It provides a high-level,
model-based environment for the creation of hardware designs.

With the introduction of the Vivado Design Suite to the Xilinx product catalogue, a new
compilation target was introduced to System Generator. IP Packager compilation allows
you to package your System Generator design into an IP module which can be included in
the Vivado IP Catalog. The System Generator design can then be used like any other
module from the IP Catalog and instantiated into a Vivado user design [4]. Further, System
Generator is fully integrated into the Vivado design flow, allowing an IP Integrator IP block
to be created directly from Vivado.

System Generator first generates an HDL Netlist from the user designed model. Any
included Vivado IP modules are automatically copied across to subfolder named “IP”,
before all RTL design files and Vivado IP design files are packaged into a ZIP file, which is
placed in a subfolder named “ip_packager”.

Testbench and HTML documentation files can also be automatically generated by the IP
catalog compilation tool. The testbench file allows the IP to be fully simulated from a
Vivado IDE project. The documentation file includes information about the IP and how it
should be interfaced in Vivado.

System Generator offers an intuitive environment for the design of IP where blocks can
be connected together to create designs quickly and easily. A large number of blocks are
available from simple mathematical operators to complex DSP operations. Functionality is
not always implemented in the most readable form in the HDL code, and this can make
some designs hard to follow. Depending on the options chosen within the System
Generator design, the IP implementation may not be as efficient as if hand coded in HDL.

13.3.3. HDL Coder

HDL Coder is a tool from MathWorks which enables the generation of synthesisable
HDL code (both VHDL and Verilog) from MATLAB functions and Simulink models. It
241

CHAPTER 13: IP Block Design
provides a workflow which will analyse a MATLAB/Simulink model and automatically
convert the system from floating point to fixed point, providing a high level of abstraction.
This allows the user to concentrate on the development of algorithms and models without
lower-level intricacies of HDL design.

The HDL Coder workflow also provides tools for HDL code verification, allowing the
generated HDL code to be tested alongside the original MATLAB/Simulink model. This
allows any errors that may be present in the generated HDL code to be easily to identified
and fixed.

The HDL code optimisation provided in the workflow provides the option of specifying
the target FPGA device in order to offer a large amount control over the implementation
allowing you to highlight critical paths, control the HDL architecture and generate
hardware resource utilisation estimation.

Once generated by HDL Coder, the HDL code can be used to create an IP core in the
same way as detailed in Section 13.3.1.

While HDL Coder allows you to create IP from existing MATLAB/Simulink models
quickly and with minimum design changes, there are some downsides. At present, not all
MATLAB functions and Simulink blocks support HDL generation. This means that some
of the functionality may have to be reworked with supported functions or blocks. Another
point worth noting is that, even though a large amount of customisation in terms of
hardware implementation and optimisation is available, the HDL code that is generated
may not be as efficient as if it were created from hand coded HDL. The generated code can

M-fileM-fileM-file

HDL Coder

M-fileM-fileVHDL/Verilog Testbench

HDL Coder

2

1

ADD 3

Simulink Model

M-fileM-fileVHDL/Verilog Testbench

Figure 13.3: HDL Coder flow
242

CHAPTER 13: IP Block Design
sometimes be complicated to follow in terms of readability, and in some cases hard to
customise.

13.3.4. Vivado High-Level Synthesis

Vivado HLS is a tool provided by Xilinx, as part of the Vivado Design Suite, which is
capable of converting C-based designs (C, C++ or SystemC) into RTL design files (VHDL/
Verilog or SystemC) for implementation of Xilinx All Programmable devices. An overview
of the Vivado HLS design flow is provided in Figure 13.4.

 From Figure 13.4 we can see that there are three distinct forms of RTL output available
from the Vivado HLS flow. These are outlined below [6]:

1. IP-XACT — IP-XACT is a public specification for documenting design IP which
was developed by the SPIRIT Consortium. It is a widely-adopted XML schema for
the description of IP which is tool-independent and machine-readable [1].
IP-XACT is the option that should be chosen to allow your IP design to be imported
into the Vivado IP Catalog [6].
IP-XACT is covered in greater detail in Chapter 18 — IP Reuse and Integration.

M-fileM-fileC, C++,

SystemC

Vivado HLS

Testbench

M-fileM-fileVHDL/Verilog

RTL Export

IP CoreIP-XACT SysGen
RTL Simulation

RTL Wrapper

Constraints/

Directives

Figure 13.4: Vivado HLS flow
243

CHAPTER 13: IP Block Design
2. IP Core — When this option is selected, your IP will be exported in a format which
can be exported into XPS.

3. SysGen — This option allows you to export the resulting RTL files as a block which
can be used in System Generator designs.

Vivado HLS will be covered in greater detail in Chapter 14 — Spotlight on High-Level
Synthesis.

13.3.5. Choosing the Right IP Creation Method

When choosing an IP creation method you must decide what is most important:
achieving the maximum operating frequency; utilising the least amount of hardware
resources; minimising development time; or a middle ground. You must also consider what
methods you or your team have most experience with, and the learning curve required
with using a method with which you are not familiar. If existing simulation models exist in
a certain format, be it MATLAB/Simulink or C/C++, chances are you may want to utilise
them and use a method which can create IP from them such as HDL Coder or Vivado HLS.

13.4. Simulation and Documentation

When building up a catalogue of custom IP, for either personal or commercial use, it is
important to ensure that each module functions correctly; the last thing you want is for one
of your customers to contact you to inform you that the IP you sold them doesn’t work!
The best way to ensure that everything is performing as it should is through extensive
simulation.

It is also important that each IP module is properly documented so that when a
customer wants to include your IP in a design, they know exactly how it works. This, of
course, also applies to you using your own IP a few years down the line; thorough
documentation acts as a good aid to remind you how your own IP works!

In this section we will cover the simulation and documentation of IP with the tools
available in the Vivado Design Suite, as well as relevant third-party tools.

13.4.1. Simulation

Simulation of your IP is extremely important at a number of different points in the
design stage. If creating your IP from a non-RTL source, you must first ensure that your
design source is performing correctly. Of course, the simulation process will differ
depending on the source of your IP. Simulation of each of the IP sources that have been
244

CHAPTER 13: IP Block Design
covered in this chapter will be detailed in this section, along with the tools that will help
you to validate the final RTL IP files.

RTL Simulation

There are a number of options available to you when simulating RTL files, the first of
which is to use the built-in simulator in Vivado. The Vivado IDE includes a HDL simulator
which allows you to simulate your design at various points in the Zynq-7000 design flow.

The Vivado simulator supports the following languages [5]:

• Verilog IEEE-STD-1364-2001

• VHDL IEEE-STD-1076-1993

• Standard Delay Format (SDF) version 2.1

• VITAL-2000

Simulation of SystemC files is not available within the Vivado IDE, but instead can be
performed by third-party RTL simulation products or in the Vivado HLS tool which will be
covered separately in the Vivado HLS section.

The following features are supported by the Vivado simulator [5]:

• Source code debugging

• Value Change Dump (VCD) file dumping

• SDF annotation

• Native support for Hard IP blocks

• SAIF dumping for power analysis and optimisation

• Multi-threaded compilation

• Mixed language simulation (VHDL and Verilog)

• Real-time waveform update

• Built-in Xilinx simulation libraries

As well as the built-in Vivado simulator, Xilinx supports the follwing third-party
simulators:
245

CHAPTER 13: IP Block Design
• Mentor Graphics QuestaSim/ModelSim (integrated in Vivado IDE)

• Cadence® Incisive® Enterprize Simulator (IES)

• Synopsys VCS® and VCS MX

• Aldec Active-HDL and Rivera-PRO (compatible but not officially supported by
Xilinx Technical support.)

An example of the Vivado RTL simulation flow is provided in Figure 13.5.

RTL Design

Behavioural Simulation

(Verifies that the RTL design

behaves as intended)

Synthesis

Implement

(Place and Route)

Design Debug

Post Implementation Simulation

(Close to hardware emulation)

Post Synthesis Simulation

Figure 13.5: Vivado RTL simulation flow
246

CHAPTER 13: IP Block Design
System Generator

As System Generator is based on the Simulink model-based platform, simulation of
System Generator designs is a relatively simple procedure. Once all the blocks are
connected and the timing parameters have been set, a simulation can be executed by
simply clicking the “run” button. Simulation data can be presented in various ways, such as
the in-built Scope blocks which can display both time- and frequency-domain plots. Data
can also be exported to the underlying MATLAB framework for further analysis and
display using the powerful plotting tools.

Once RTL code for your IP has been generated, the System Generator tools provide the
ability to perform hardware co-simulation for the validation of the design. This allows you
to incorporate a design running on an FPGA directly into a System Generator simulation,
allowing you to provide the same stimulus to both the System Generator model, and the
implemented RTL code, simultaneously. The output from both the simulation and the
hardware co-simulation can then be gathered and compared, allowing you to check the
validity of the implemented RTL design.

HDL Coder

As HDL Coder works within MATLAB and Simulink, the simulation of all IP designs is
identical to the process of simulating a M-code file or a Simulink model. This allows you to
present your simulation results in the same way as any other MATLAB/Simulink
simulation, using the extensive plotting tools.

With RTL code generated by HDL Coder, the functionality can be compared to that of
the original IP model using the HDL Verifier tool. Multiple techniques for verification are
supported, including co-simulation of the design by interfacing with HDL simulators (such
as ModelSim and QuestaSim from Mentor Graphics and Incisive from Cadence) as well as
providing hardware co-simulation via FPGA-in-the-loop. The FPGA-in-the-loop
simulation is carried out by automating a process that creates and runs an FPGA imple-
mentation on a development board. The process of FPGA-in-the-loop verification is
similar to that described in the System Generator simulation section.

Using the HDL Verifier HDL co-simulation and hardware co-simulation allows you to
provide both the MATLAB/Simulink model and the generated RTL code with the same
input stimulus. Outputs from both designs can then be compared in order to validate the
design and identify any errors.
247

CHAPTER 13: IP Block Design
Vivado HLS

HLS automatically creates the scripts that are required to perform co-simulation of the
generated design with the original C testbench file [6]. This allows both the original C-
based design and the generated RTL files to be tested with the same input stimuli, and the
corresponding outputs compared in order to find any discrepancies. This removes the need
to create an RTL testbench file.

The following RTL simulators are supported by HLS [6]:

• ModelSim

• VCS

• Open SystemC Initiative (OSCI)

• NCSim

• XSim

• ISim

• Riviera

The VCS, NCSim and Riviera HDL simulators are only supported on the Linux
operating system [6]. If SystemC code is generated, the built-in SystemC kernel can be used
for verification.

Fixed point data types are supported by C++ and SystemC simulations, and when used
simulation results will match that of the implemented RTL files. This allows the effects of
bit-accuracy, quantisation and overflow to be analysed with fast C-level simulation [6].

As part of the RTL co-simulation process, HLS generates a SystemC wrapper that creates
adapters around the RTL modules. The C code wrapper is then instantiated into the
existing C testbench file. An example of a co-simulation wrapper is shown in Figure 13.6.
248

CHAPTER 13: IP Block Design
13.4.2. Documentation

Documentation is an important component of any IP, whether it be commercial, open-
source or internal. Good IP documentation should allow a user who has never used a
specific IP module to understand, connect and implement it within their own design
without any further help. Documentation also acts as a good reminder for a user, even if
they have created the IP themselves.

In this section, the documentation features of the IP creation tools and methods that
have been detailed in this chapter will be reviewed.

System Generator

System Generator has an option to create interface documentation when generating IP.
This is an HTML document which specifies the interface to the generated IP design, and
comprises of the following sections:

• Introduction — Provides a brief introduction to the document.

• Port Interface — This section details the port interface of the generated IP. A table
lists all of the input and output ports of the design with the following detail:

- Name — Top-level port names.

main.c/main.cpp

RTL

Module

Device Under Test (DUT)

Wrapper

Figure 13.6: RTL co-simulation wrapper
249

CHAPTER 13: IP Block Design
- Direction — Port direction, e.g. in, out or inout.

- HDL Type — Port HDL type, e.g. std_logic, std_logic_vector.

- Type — The connected signal type, e.g. data, clock, clock enable.

- System Generator Type — The signal type within System Generator, e.g.
ufix16_15, sfix12_11 etc.

- Period — The sampling period of a given signal. Information of multi-rate reali-
sation is provided in another section of the HTML document.

- Comment — Further comments are provided here if included in the original
System Generator design.

• Multi-Rate Realization — If a multi-rate design is generated, this section will be
populated with information regarding the network of clock enable signals which are
created to control the various clock signals throughout the design. A generic timing
diagram is also included to help explain the realisation of the different clock
domains.

• Design Files — This section provides a list of all of the HDL files that were created
by System Generator during the IP generation process. The list is displayed in the
order of the top-level module down to the lowermost-level, in order to aid with
design compilation. A brief description of each HDL file is also provided, along with
a simple block diagram of the design.

• Design Statistics — A table is presented in this section which contains the settings
that were specified in the System Generator block for design generation. The settings
listed include:

- Compilation target — Target for the compilation, e.g. IP Catalog, HDL Netlist or
Hardware Co-simulation.

- Part — The target Xilinx FPGA/Zynq part.

- Synthesis Tool — Target synthesis tool, e.g. Vivado or ISE.

- Multirate Implementation — Method of multirate implementation, e.g. clock
enables.

• Tools — A list of the tools and their versions used to generate the design is provided
here.
250

CHAPTER 13: IP Block Design
HDL Coder

When generating an IP core from either a MATLAB algorithm or Simulink model, HDL
Coder provides the option to generate an HDL Code Generation Report. This is an HTML
report that includes the following sections [2]:

• Summary — This provides a brief overview of the basic settings used to generate the
IP and information on the generated IP. Information provided here includes [2]:

- IP core name and version.

- Target IP directory.

- Target language, e.g. VHDL or Verilog.

- Source model name and version.

• Target Interface Configuration — This section contains information Processor/
FPGA synchronisation mode (either free running or coprocessing) and the various
interfaces that were specified when creating the IP. This details [2]:

- Port name —The names of the input and output ports of the IP.

- Port type — Port direction type, e.g. input or output.

- Port data type — The data type used within MATLAB/Simulink, e.g. ufix16_15,
sfix12_11 etc.

- Target platform interfaces — The interface type, e.g. AXI4-Lite, AXI4-Stream or
external port.

- Bit Range / Address / FPGA pin — Depending on the selection for Target
platform interfaces, this section contains the bit range, address of processor-acces-
sible registers or the specified FPGA pin for external ports.

• Register Address Mapping — Depending on the interface that was specified for the
IP module, this section contains details of any embedded processor-accessible
registers in the design. This section includes any register names, their corresponding
address offsets from the base address and a brief description of their operation.

• IP Core User Guide — This section provides a brief overview of the operation and
connectivity of the generated IP. It comprises three subsections [2]:
251

CHAPTER 13: IP Block Design
- Theory of Operation — Provides a brief overview of the operation of the device,
including the master-slave control of the IP and the register-accessible reset and
enable signals.

- Processor/FPGA Synchronisation — A description of the FPGA synchronisation
mode (free running or co-processing) is provided here, as well as the data read/
write procedure between the IP core and the processor.

- Environment Integration — Information on how to integrate the newly generated
IP into the Xilinx development environment is provided here.

• IP Core File List — Hyperlinks to the various files that are generated by HDL Coder
are provided here along with a hyperlink to the IP core directory.

13.5. Chapter Review

In this chapter we have introduced the concept of intellectual property and the use of IP
blocks, as well as the recent industry trend of IP subsystems. The various ways in which the
Vivado Design Suite enables you to create and maintain your own IP catalogue have been
introduced, including HDL, Vivado HLS and System Generator. The third-party tool,
MathWorks HDL coder has also been discussed.

Importance has been placed on the need for proper documentation, simulation and
testing of all IP created, and the various simulation processes for all of the previously intro-
duced IP creation tools have been highlighted. The provided documentation creation
options incorporated in corresponding tools have also been detailed.

13.6. References

NOTE: All URLs last accessed June 2014.

[1] “IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool
Flows”, IEEE Standard 1685-2009, February 2010.

[2] MathWorks, “HDL Coder User’s Guide”, R2014a, March 2014. Available via: http://www.mathworks.co.uk/
help/

[3] R. Sass and A. G. Schmidt, “Introduction” in Embedded Systems Design with Platform FPGAs: Principles
and Practices, 1st. Ed, Morgan Kaufmann, 2010, pp 1 - 42.

[4] Xilinx, Inc, “Vivado Design Suite User Guide: Model Based DSP Design using System Generator”, UG897,
v2014.1, April 2014.
252

CHAPTER 13: IP Block Design
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug897-vivado-
sysgen-user.pdf

[5] Xilinx, Inc, “Vivado Design Suite User Guide: Logic Simulation”, v2014.2, UG900, June 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug900-vivado-logic-
simulation.pdf

[6] Xilinx, Inc, “Vivado Design Suite User Guide: High-Level Synthesis”, UG902, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug902-vivado-high-
level-synthesis.pdf
253

CHAPTER 13: IP Block Design
254

14

Spotlight on

High-Level Synthesis

ne of the significant trends in digital systems design is the move to accelerate devel-
opment cycles, crucially without compromising on verification. This is inevitably driven by
commercial factors, and in particular the need to take new products to market as quickly as
possible. Of course, any strategies that reduce the design effort are also attractive due to the
implied development cost savings.

The concepts underpinning design acceleration strategies are (i) design reuse, and (ii)
raising of the abstraction level. Both of these themes have been introduced already in the
book, and here we focus on the latter in particular, by placing the spotlight on Xilinx
Vivado High Level Synthesis (or Vivado HLS). This is a tool for synthesis of digital hardware
directly from a high level description developed in C, C++, or SystemC, i.e. removing the
need to manually create a version of the design targeted to hardware, such as a VHDL or
Verilog description. Rather, the HLS tool undertakes this task. The defining aspect of HLS
is that the designed functionality and its hardware implementation are kept separate — the
C-based description does not implicitly fix the hardware architecture, as is inherently true
in RTL-level design — and this provides great flexibility.

We will see that working in high level, C-based languages has the potential to signifi-
cantly reduce design time, due to the raised abstraction level. Additionally, the HLS process
provides an integrated mechanism for generating and assessing variations on the hardware
implementation, making it easy and convenient to find the best architecture.

O

255

CHAPTER 14: Spotlight on High-Level Synthesis
This chapter will continue by defining and motivating the need for HLS, while also
briefly reviewing the historical context and input languages used. The Vivado HLS tool will
be introduced, and the design flow and processes of HLS reviewed from a high level
perspective. This will be followed by a more in-depth look at Vivado HLS in Chapter 15.

14.1. High-Level Synthesis Concepts

Before proceeding to a discussion of the Vivado HLS tool and practical design methods
in Chapter 15, it is important to establish some of the underpinning concepts. We will start
with the most basic question!

14.1.1. What is High-Level Synthesis (HLS)?

It is worth beginning with a clear definition of high-level synthesis, and to do this we
must first review the concept of abstraction with reference to digital design for FPGAs.

As in many other contexts, abstraction means ‘taking away’. This is effectively the hiding
of detail — the higher the level of abstraction, the more detail is hidden. There are various
models for abstraction presented in the literature, many of which derive from the Gajsku
and Kuhn ‘Y-chart’ for Very Large Scale Integration (VLSI) design [9], published as long
ago as 1983! However, here we will focus our discussion on current FPGA design practices,
and consider that there are four levels of abstraction, in ascending order: structural, RTL,
behavioural, and high-level, as depicted in Figure 14.1.

High Level

Behavioural

RTL

Structural

HDL design entry

C/C++/SystemC

 design entry

le
v
e
l
o
f
a
b
s
tr
a
c
ti
o
n

a
m
o
u
n
t
o
f
v
is
ib
le

d
e
ta
il

Figure 14.1: Levels of abstraction in FPGA designs
256

CHAPTER 14: Spotlight on High-Level Synthesis
In terms of design entry using HDLs, such as VHDL or Verilog, the lowest level of
abstraction (structural) involves explicitly instantiating, configuring and connecting each
hardware element that comprises the design. This may even extend down to the level of
LUTs and FFs. This style represents the designer taking explicit control over all of the
design details, which reduces the potential for the synthesis process to optimise the design.
More often, designers work at the ‘Register Transfer Level’ (RTL) level. This level of
abstraction hides the technology-level details, but still represents a description style from
which registers, and the operations occurring between registers, can be interpreted. Logic
synthesis tools are designed to work at this level of abstraction, i.e. to translate RTL code to
hardware. Behavioural HDL descriptions are at a higher level of abstraction than RTL, and
constitute an algorithmic description of the circuit (i.e. how it ‘behaves’), rather than an
expression of individual operations with respect to registers. The use of behavioural HDL,
therefore, places a greater emphasis on the ability of the synthesis tool to infer hardware
from the description, and as such the designer concedes some control over the final imple-
mentation, but with the implied benefit that designs can be created more rapidly. Finally,
the high-level design entry method discussed in this chapter is not actually rooted in HDL,
but uses a set of languages suited to expressing designs at an algorithmic level of
abstraction, namely C, C++, and SystemC. These languages are, in fact, often used to
develop System Level Models (SLMs) as a first, high-level step of modelling a system [22].

In the above discussion, we have used the term ‘synthesis’ in a slightly different context
from HLS. High-level synthesis is distinct from other types of synthesis. In FPGA design,
‘synthesis’ usually refers to logic synthesis, i.e. the process of analysing and interpreting
HDL code and forming a corresponding netlist. High-level synthesis actually means
synthesising the high-level C, C++ or SystemC code into an HDL description, which would
thereafter undergo logic synthesis to obtain a netlist. In other words, high-level synthesis
and logic synthesis are both applied (one after the other) when taking a Vivado HLS design
towards a hardware implementation, as shown in Figure 14.2.

Furthermore, physical synthesis refers to the conversion of HDL to a netlist with explicit
knowledge of the target FPGA, and hence the optimisation of the design against the
physical characteristics and available resources of the device.

14.1.2. Motivations for High-Level Synthesis

With a high-level representation abstracting low-level detail, the implication is that the
description of the circuit becomes simpler. This approach does not actually remove the
need to specify aspects such as wordlengths, parallelism and sharing, but to a large extent,
the designer directs the process and the tools implement the details. The result is that
designs can be generated much more rapidly than using more traditional methods, which
257

CHAPTER 14: Spotlight on High-Level Synthesis
require the designer to explicitly describe all aspects. Importantly, the separation of
functionality and implementation implied in HLS means that the source code does not fix
the architecture. Variations on the architecture can be created quickly by applying appro-
priate directives to the HLS process, rather than having to fundamentally rework the source
code, as would be necessary in RTL-level design.

 Of course, the implication of giving up full control relies upon the designer trusting the
HLS tools to implement lower-level functionality correctly and efficiently, and under-
standing how to exert influence over this process. There is however a clear motivation to do
so, as the potential to accelerate the design process in this way is considerable.

 On a more practical level, high-level synthesis from software languages is convenient for
many designers, as these languages are widely adopted for developing algorithms and
system-level descriptions. It would therefore be useful to leverage the experience of the
many engineers comfortable with C, C++ and other programming languages for the
purposes of FPGA design. The facility to rapidly convert from software to hardware design
languages (crucially, without the need to create and validate an equivalent hardware-
targeted design) therefore constitutes a simplification of the design process [22]. The
transition from software description to hardware design would normally enforce the

High Level

Behavioural

RTL

Structural

Netlist

H
D
L

d
e
s
c
ri
p
ti
o
n

logic synthesis

high level synthesis

Figure 14.2: High level synthesis and logic synthesis
258

CHAPTER 14: Spotlight on High-Level Synthesis
distinct design step of developing HDL and validating it against the software-based
reference design. With this approach, the two processes can be combined into one. HLS is
also beneficial in terms of systems development and software/hardware partitioning, as
there is a common language for targeting both elements of the system; this makes it easy to
adapt and retarget parts of the design as it is iterated to completion.

As we will see in detail later, the automation present in high-level synthesis tools permits
the designer to rapidly produce alternative versions of a given design. For instance, varia-
tions on the same design could be produced with different levels of parallelism, allowing
the design space to be explored, trade-offs evaluated, and the best solution identified.

In summary, if the motivation for HLS had to be expressed in one word, it would be
‘productivity’!

14.1.3. Design Metrics and Hardware Architectures

An important point highlighted earlier in this chapter is that the functional description
and the implementation are separate in HLS. Thus, the designer has the opportunity to
evaluate possible architectures generated by the HLS process, and optimise according to his
or her requirements. This statement does however beg the question, “What is the designer
trying to optimise?”.

In simple terms, hardware design has two fundamental metrics:

• Area, or resource cost — the amount of hardware required to realise the desired
functionality; and

• Speed, or specifically throughput — the rate at which the circuit can process data.

There are also other factors, and in some cases subtle relationships between them (to be
reviewed further in Section 14.4.4), but these are the two most important ones.

The designer is always faced with a trade-off between area (resource cost) and
throughput, and this is the key aspect evaluated and optimised during HLS. There may be a
certain minimum throughput or maximum area that the system can accommodate, and
therefore the task is to decide on the best solution for their particular problem. HLS helps
the designer to accomplish this quickly.

This point can be expanded upon using the analogy of decorating a house, and let us
assume that the whole house needs decorated. The work could be undertaken by a single
painter, and it would take him (or her) 6 weeks. On the other hand, 6 painters could finish
the job in 1 week, or 3 painters would require 2 weeks, and so on. Various ‘solutions’ are
259

CHAPTER 14: Spotlight on High-Level Synthesis
possible in the trade-off between resources (number of painters) and throughput (the recip-
rocal of the time take to complete the job). A badly organised job might involve 5 painters
taking 4 weeks to complete the decoration of the house, and this would of course represent
a poor solution!

The realisation of a hardware architecture is similar. At a high level of abstraction,
functionality is implemented using units of processing resource. Using more units allows
processing to complete more quickly (high cost and high throughput), whereas at the
opposite end of the scale, a single processing resource could be deployed and reused over
time (low cost and low throughput). Several other points in the trade-off could also be
attained. Of course, as with the decorating example, it would also be possible to come up
with a poor design that achieves low throughput at high cost.

A simple perspective on the cost/throughput trade-off is provided in Figure 14.3.

14.2. Development of HLS Tools

High-level synthesis is not a new concept and, although it has received considerable
research interest and found a level of adoption in industry, it has not yet become a
widespread favourite among FPGA designers [12], [34]. However, with recent improve-

resource cost

th
ro
u
g
h
p
u
t

high cost, high throughput

low cost, low throughput

high cost,

low throughput

(poor solutions!)

Figure 14.3: A conceptual illustration of the design trade-offs explored via HLS
260

CHAPTER 14: Spotlight on High-Level Synthesis
ments in software design tools for HLS, and bearing in mind the clear motivations for HLS
described in earlier sections, it is not surprising that interest in HLS is growing [21].

It is worth noting that contemporary HLS is very similar, in terms of motivations,
conceptual framework and terminology, to the early methods reviewed in [20]; in
particular, the scheduling and binding of operations (to be explained in detail later), and the
ability to spin out multiple design variations from a single description. At the time the
above referenced paper was written (the early 90’s), there were still a variety of unresolved
issues, including those of verification, human intervention/guidance, handling of complex
constraints, and the integration of HLS-generated designs. Design entry methods included
programming languages such as Pascal and Ada [29]. The C language subsequently gained
prominence, and in fact C-based languages are still the most popular for HLS.

 Later, interest grew in object-oriented programming languages for conversion to
hardware descriptions, such as C++ and, to a lesser extent, Java [8], [19], [28]. Object-
oriented software provides the abstraction mechanisms necessary to represent more
sophisticated hardware designs. Further language features specific for hardware design are
included in SystemC, namely the ability to model hierarchy, bit accuracy, and the
concurrent execution behaviour of hardware [10], [25]. SystemC has gained prominence as
a language for modelling complex designs at the system-level.

A number of other languages have enjoyed some level of adoption for C-based design,
including Handel-C, which originated from the UK-based company, Celoxica, and was
later purchased by Mentor Graphics [24]; Cadence’s C-to-Silicon Compiler [7]; and Impulse-
C, developed by Impulse Accelerated Technologies [15]. Although all of these represent
methods of high-level design entry, the degree to which they fit our definition of HLS (i.e.
the separation of function and architecture), varies. All of them represent specialist tools,
additional to the algorithm and FPGA system design tools required for FPGA and Zynq
development.

Meanwhile, MATLAB-based design entry was the subject of several academic papers in
the early 2000’s [2], [13], and has since featured in the AccelDSP tool (part of the Xilinx ISE
suite, now deprecated) which was able to synthesise a subset of high-level MATLAB DSP
functions [31]. Now, synthesis from MATLAB code and Simulink models prominently
features in MathWorks’ own HDL Coder product, providing a much more extensive
MATLAB-to-RTL capability [23]. The attraction of synthesis from MATLAB code is
similar to the motivation for synthesis from C code: high-level design methods can be used
for design entry, abstracting many of the implementation details. This is particularly true
as, given its status as an underpinning platform for Xilinx System Generator, many FPGA
designers may already be familiar with MATLAB programming and its environment.
261

CHAPTER 14: Spotlight on High-Level Synthesis
To bring the discussion back to the topic of this chapter, Xilinx’ Vivado HLS tool was
originally AutoPilot, developed by AutoESL Design Technologies Inc., a spin-out of the
University of California, Los Angeles. Having surveyed the market for the best HLS
technology available, Xilinx acquired AutoESL Design Technologies in early 2011 [3], [4],
[30]. Xilinx subsequently integrated AutoESL into the ISE Design Suite, and later the
Vivado Design Suite, at which time the tool was rebranded Vivado HLS [27].

The importance of these developments is significant, as they represent the graduation of
HLS from niche tools to mainstream development.

14.3. HLS Source Languages

In the next section we will move on to discuss the Vivado HLS tool in detail, but it is
useful to first review source languages for HLS in the general sense. We begin by providing
some background on the three languages of Vivado HLS, namely C, C++, and SystemC,
and then briefly summarise other languages supported by third party software devel-
opment tools.

14.3.1. C

The popular, general-purpose C language is a procedural programming language which
was initially developed by Bell Labs and has been in use since the 1970s [18], [26]. It was
standardised by the American National Standards Institute (ANSI) in 1989, and subse-
quently adopted by the International Organization for Standardization (ISO) as standard
ISO 9899. Since then, several revisions have been made to incorporate new features into
the language, the most recent of which was in 2011 [16]. The standardised versions of C
may be referred to as ‘ANSI-C’, ‘ISO-C’, or simply ‘Standard C’.

Historically, C represented a raising in the abstraction level of software programming: it
allowed programs to be written not in assembly language, but using higher-level constructs
and commands. This had the significant advantages of simplifying the programming task:
fewer lines of code were required, with less potential for error, enabling faster debugging
and verification processes. It also made the code more portable, because it could be used on
different platforms.

Of course, in order for C to be successful, it also had to be efficient enough to justify its
use over assembly language, which gave the designer full and explicit control, but with
greater design effort. In a sense, the adoption of C is analogous to the concept of HLS for
hardware — in both cases designs are developed at a higher level of abstraction, with
262

CHAPTER 14: Spotlight on High-Level Synthesis
several benefits including a reduction in development time and effort, ease of verification,
and enhanced portability.

Aside from Standard C, which defines the core functionality of the language, C can be
extended by including application-specific and target-specific libraries. For instance, when
using C to develop software for running on Zynq’s ARM, additional libraries are included
in the SDK to support floating and fixed point arithmetic, and to target the facilities of the
NEON processor.

C has numerous relationships with other programming languages, the most significant
of which is with C++.

14.3.2. C++

C++ is an object-oriented language based on C; it extends C with the concepts of classes,
templates, polymorphism, and virtual functions, amongst several other features. The level
of abstraction of C++ is normally higher than C, because C++ has features that hide detail
and permit more sophisticated and flexible code to be developed. On the other hand, the
language features and programming styles of C are compatible with C++, and consequently
C++ can be considered a superset of C. In summary, C++ represents a higher level
language than C, but it also retains support for low-level C operations.

Like C, C++ was also developed at Bell Labs. The standard for C++ was initially
published in 1998 as ISO 14882, and has undergone revision to produce subsequent
versions, most recently in 2011 [17].

14.3.3. SystemC

Although here we tend to treat SystemC as a language in its own right, strictly speaking
it is an extension to C++, i.e. a specific class library which is included in development
projects as the header file, ‘systemc.h’. SystemC permits C++ style code to be written using
many of the hardware-centric principles of HDLs, such as hierarchy, concurrency, and
cycle accuracy, which do not form part of Standard C++.

SystemC is commonly used for Transaction Level Modelling (TLM) and Electronic
System-Level (ESL) design, in the context of SoC [5]. TLM is the development of very
high-level descriptions that model the interactions between system components, while ESL
refers to the design of a system at a very high leve of abstraction, i.e. its functionality and
basic architecture. As such, both of these represent methods for developing and refining
the high-level framework for the SoC, before starting work on the functional implemen-
tation of individual components. In TLM, various levels of abstraction are possible in terms
263

CHAPTER 14: Spotlight on High-Level Synthesis
of, for example, the implementation target for individual components, and the timing
fidelity associated with system transactions [6]. The language can also be used for ESL
verification as an integrated part of the development process [11].

Early work on SystemC was supported by the Open SystemC Initiative consortium
(which in 2011 merged with the Electronic Design Automation (EDA) standards organi-
sation, Accellera, to form the Accellera Systems Initiative [1]). This represented the initial
development phase of SystemC; the SystemC standard was ratified by the IEEE in 2005 as
IEEE 1666, and later revised as IEEE 1666-2011 [14]. It is also closely related to SystemC
AMS, which has analogue and mixed signal support.

Existing users of SystemC for TLM and systems engineering are in a particularly good
position to adopt the language for HLS, but even without this background, designers
should find that the hardware-oriented features of SystemC make the language very
suitable for HLS, particularly for developing complex systems.

The scope of this chapter precludes in-depth introduction of SystemC, and we will use
the C language for the majority of our illustrative examples. Readers are referred to [5] and
[14] for further information on SystemC.

14.3.4. Other Languages for High-Level Synthesis

As reviewed in Section 14.2, the languages used for HLS are predominantly C-based,
including C, C++ and SystemC as supported in Vivado HLS. We also noted that third party
HLS design flows include other C-based languages such as HandelC, and also MATLAB
code. Research interest in HLS continues, and it is possible that further high-level
languages will be supported for FPGA synthesis in the future.

14.4. Introducing Vivado HLS

In this section, we will start by defining what Vivado HLS does and the steps involved,
before considering its role in the design flow for Zynq. Later, Chapter 15 will cover use of
the tool on a practical level, along with further discussions of algorithm and interface
synthesis, and the processes involved in creating solutions and evaluating them.

14.4.1. What Does Vivado HLS Do?

In short, Vivado HLS transforms a C, C++ or SystemC design into an RTL implemen-
tation, which can then be synthesised and implemented onto the programmable logic of a
Xilinx FPGA or Zynq device [33]. This represents the high-level synthesis step depicted in
Figure 14.2 on page 258.
264

CHAPTER 14: Spotlight on High-Level Synthesis
It is important to reiterate that all C-based designs in the context of HLS are for imple-
mentation in programmable logic; i.e. as distinct from software code intended to run on a
processor (whether Zynq’s ARM processor, or a soft processor such as MicroBlaze).

In performing HLS, the two primary aspects of the design are analysed:

• The interface of the design, i.e. its top-level connections, and

• The functionality of the design, i.e. the algorithm(s) that it implements.

 In Vivado HLS design, the functionality is synthesised from the input code via the
process of Algorithm Synthesis. The interface is created using one of two alternatives: it can
either be (i) manually specified, or (ii) inferred from the code (Interface Synthesis). A
simple conceptual diagram is provided in Figure 14.4 (note that this depicts only a subset of
interface types).

In the specific case of the SystemC input language, interfaces must be manually
specified, with two exceptions which will be mentioned later [33].

R

A

M
FIFO

bus

wire
control

bus

RAM

FIFO

Interface Synthesis
(or Manual Specification)

Algorithm Synthesis

...Functionality...

z-1 z-1 z-1

Interface Synthesis
(or Manual Specification)

Figure 14.4: Clarification of the algorithm and interface, and showing a subset of interface types
265

CHAPTER 14: Spotlight on High-Level Synthesis
Algorithm Synthesis

Algorithm Synthesis is concerned with the functionality of the design. The desired
behaviour is interpreted from the C, C++, or SystemC code that forms the input to the
process (the input to the HLS process is a function written in the chosen programming
language). Operations are inferred, and these are translated into a set of RTL statements,
which are usually executed over several clock cycles.

As will be discussed later, the designer can exert control over the algorithm synthesis
process via Vivado HLS directives, resulting in variations on the RTL output from HLS
being produced. For example, Solution 1 might require 500 slices to implement and 20
clock cycles to execute, whereas Solution 2 might require 1200 slices and 10 clock cycles.
The designer is able to experiment and thus achieve a favourable result in terms of their
priority implementation metric(s).

Interfaces I: Interface Synthesis

As its name suggests, Interface Synthesis refers to the interface of the HLS design, and
this includes both the ports and the protocols used. The details of all ports (in terms of their
types, dimensions, and directions) are inferred from the top-level function arguments and
return values of the source C/C++ file; protocols are inferred from the behaviour of the
ports. For example, the simplest interface would be a simple 1-bit wire, while for more
complex interfaces, a bus or RAM interface may be used. Naturally the synthesised
interface facilitates communicate with other modules in the system.

Interfaces that can be inferred from interface synthesis include: wires, registers, one-way
and two-way handshakes, FIFOs, memories, and buses [33]. Further options are available
relating to interface synthesis, specifically to permit ports to be inferred from global
variables, and to include a global clock enable. Interface synthesis will be discussed in detail
in Chapter 15.

Interfaces II: Manual Specification

Although C and C++ designs are fully supported for interface synthesis, SystemC
designs are not, and as such, the interfaces of SystemC designs must be manually specified
and their behaviour fully described. This corresponds with the hardware-specific features
of the SystemC language, and an example will be provided in Chapter 15 which illustrates
the similarity between SystemC-based interface specification, and the equivalent in VHDL.

Notably there are two exceptions to the general rule stated above: memory and bus
interface types can both be inferred by interface synthesis of SystemC code.
266

CHAPTER 14: Spotlight on High-Level Synthesis
Manual interface specification is also supported for C and C++ designs and may be used
if desired; this means that there is the option to explicitly define interfaces, rather than have
the interface synthesis process infer them.

14.4.2. Vivado HLS Design Flow

In the previous section, our discussion was limited to the primary processes and outputs,
i.e. the execution of HLS algorithms and the production of RTL code. However, the full
design flow for HLS comprises further stages, including elements of verification in
particular. The full design flow is shown in Figure 14.5, and then summarised.

C code design C testbench design

Golden Reference

C Functional Verification

High Level Synthesis

Evaluate ImplementationC/RTL Cosimulation

Directives

Constraints

RTL Export

C

c
o
d
e

R
T
L

c
o
d
e

d
e
s
ig
n

re
v
is
io
n

(o
p
ti
o
n
a
l)

design

iteration

hardware implementation

accepted

Figure 14.5: An overview of the Vivado HLS design flow
267

CHAPTER 14: Spotlight on High-Level Synthesis
Inputs to the HLS Process

The primary input to the HLS process is a C/C++/SystemC function, along with a C-
based testbench which has been developed to exercise the function and verify correct
operation. This will involve a ‘golden reference’ against which to test the outputs produced
by the function intended for synthesis; the golden reference may take the form of a
prepared set of output values, or it may form part of the testbench itself.

Functional Verification

Firstly, it is necessary to verify the functional integrity of the C/C++/SystemC code that
forms the input to HLS, before beginning the process of synthesising it into RTL code. This
can be achieved by writing a testbench in the same high-level language, and checking the
results produced against some form of ‘golden reference’; for instance, this might be a
prepared set of output test vectors which are known to be correct.

High-Level Synthesis

The next step is to undertake the HLS process itself, which involves analysis and
processing of the C-based code, together with user-supplied directives and constraints, to
create an RTL description of the circuit. Once the HLS process is complete, a set of output
files is produced, including design files in the desired RTL language. Various other log and
report files, testbenches, scripts, etc. are also created.

C/RTL Cosimulation

Once HLS has been performed and the equivalent RTL model produced, it can be
checked against the original C/C++/SystemC code via the process of C/RTL cosimulation in
Vivado HLS. This process re-uses the original, C-based testbench to supply inputs to the
RTL version generated by HLS, and check the outputs it produces against expected values.
Importantly, this saves the effort of generating a new RTL testbench. The SystemC output is
particularly useful here, as it provides a mechanism for verifying the design in environ-
ments where an HDL simulator is not available. A good example covering both C
functional verification and C/RTL cosimulation is available in [32].

Evaluation of Implementation

Along with verifying the integrity of the design, it is also necessary to evaluate the RTL
output in terms of its implementation and performance. For example, the numbers of
resources it requires in the PL, the latency of the design, maximum supported clock
frequency, and so on. We will outline these metrics in Section 14.4.4, and discuss them in
268

CHAPTER 14: Spotlight on High-Level Synthesis
further detail in Chapter 15. For now, it is sufficient to note that, as the designer, we can
influence the implementation via the constraints and directives applied to the HLS process.

Design Iterations

Noting the above, as part of the design flow, the implementation of the RTL is evaluated
and, as necessary, the constraints and directives are refined; each revision corresponds to a
new ‘solution’ in Vivado HLS terminology (more to follow on solutions in Section 14.4.6). It
is also possible that evaluation of the design will prompt more fundamental review and
refinement of the original algorithm, as designed in C code and input to the HLS process.

Figure 14.5 shows the steps undertaken from C design, to the creation of outputs for
RTL synthesis. Note that multiple HLS iterations may be undertaken using modified direc-
tives and constraints, in order to find a ‘best’ solution; this corresponds to the feedback
path shown on the right hand side of the diagram.

Should the designer be prompted to change the input C code, a more significant step
backwards in the design process is involved, and this is indicated by the arrow at the left
hand side of the diagram. Any changes to the C code require functional re-verification,
before the subsequent HLS, C/RTL verification, and implementation evaluation processes
are again performed and iterated as needed.

RTL Export

Once the design has been validated, and the implementation iterated to the point of
achieving the intended design goals, it will be intended for integration into a larger system.
This can be achieved directly using the RTL files automatically created by the HLS process
(i.e. VHDL or Verilog code), however it may be more convenient to use the facilities of
Vivado HLS for packaging IP. Packaging the outputs produced by Vivado HLS means that
HLS designs can be easily introduced into other Xilinx tools, namely IP Integrator within
Vivado IDE, XPS (for the ISE design flow), and System Generator.

SystemC outputs from the HLS process are produced to enable verification of the
hardware produced, but are not themselves synthesisable.

14.4.3. C Functional Verification and C/RTL Cosimulation

Given the importance of verification, it is useful to further detail the C functional verifi-
cation and C/RTL cosimulation processes. These are described graphically in Figure 14.6.

 Depicted on the left hand side, a C-based testbench has been designed to create and
supply input test vectors to the functional C module. The same test vectors are passed
269

CHAPTER 14: Spotlight on High-Level Synthesis
through a ‘known good’ golden reference design, or alternatively read from a prepared file,
to give golden reference output test vectors. These are compared with the outputs from the
C module, and the testbench reports a pass if the two set of results match, or failure
otherwise. The testbench may also be designed to report the total number of errors, or to
provide other automated feedback on the results.

As part of the Vivado HLS C/RTL cosimulation process, an equivalent testbench config-
uration is automatically created by Vivado HLS (shown on the right of Figure 14.6). The
testbench verifies the RTL version of the original C module, i.e. the primary output of HLS,
against the golden reference, and reports success or failure as before.

All of the files required for C/RTL cosimulation are created automatically by Vivado
HLS, which removes the need for manual RTL testbench creation. The generated testbench
includes the necessary translations of data passing between the C-based testbench and the
RTL module being tested.

Vivado HLS is also capable of creating a bit-true, cycle accurate System-C model of the
generated hardware, and this can be co-simulated in circumstances where an RTL
simulation is not available.

Verification is clearly an important aspect of the design process, and the availability of
this tool support for RTL-level testing enables increased productivity. In particular, the
designer does not need to spend time creating an equivalent testbench for RTL simulation,

C
Golden

Ref.

check outputs

C test inputs

RTL
Golden

Ref.

check outputs

C test inputs

Functional Verification C/RTL Cosimulation

Original Testbench Cosimulation Testbench
(automatically generated)

Vivado HLS

C/RTL Cosimulation

Process

Figure 14.6: C functional verification and C/RTL cosimulation in Vivado HLS
270

CHAPTER 14: Spotlight on High-Level Synthesis
and the potential for introducing errors by doing so are eliminated. However, it is
important to note that RTL simulation is a functional simulation, which does not model
realistic timing or bus protocol behaviours. Therefore, it cannot completely verify the
correct operation of the module in non-ideal conditions.

14.4.4. Implementation Metrics and Considerations

At this stage, it is useful to define the implementation metrics and related considerations
which form part of the design process. We do so here in a simple and informal style; these
issues will be returned to and expanded upon later, in Chapter 15.

• Resources / area — How many resources are needed to implement my design, and
how does this compare to the amount available on my target FPGA / Zynq device?

• Throughput — At what rate can I pass data through the design? Does this meet the
needs of my application?

• Clock frequency — What is the maximum clock frequency that I can run my design
at? Is this compatible with the rest of my system?

• Latency — How many clock cycles does it take for my design to produce an output?
Is this delay acceptable in the context of the system in general?

• Power consumption — How much power does my design consume when it is
operating? Is this part of a system sensitive to power consumption?

• I/O requirements — How complex are the interfaces of my design? Are they
compatible with other components of the system?

Any or all of the above factors may be constrained in some way, often with certain
factors being prioritised over others. This normally depends on the requirements of the
application. For example, a system targeted at a low cost application might prioritise
resource minimisation, in order to utilise a smaller device; whereas, on the other hand, a
system requiring to adapt quickly to changing inputs may seek to minimise latency and
maximise throughput, at the expense of greater resource utilisation.

It is useful to describe briefly the term clock uncertainty. The HLS process aims to
achieve the target clock period minus the clock uncertainty, which provides a margin for
other delays that cannot be modelled at the HLS stage, e.g. RTL synthesis and place and
route delays. HLS naturally treats the module in isolation, whereas routing delays are only
fully exposed at the system integration stage when the system is populated. The clock
uncertainty is user-specified, with a default value of 12.5% [33].
271

CHAPTER 14: Spotlight on High-Level Synthesis
14.4.5. Overview of the High-Level Synthesis Process

Although we have discussed the design flow in general terms, it is useful to consider the
process of HLS is more detail. This section will therefore summarise the steps involved in
the HLS of C/C++/SystemC design files to achieve an RTL equivalent. For the purpose of
providing practical examples, C will be used as the design language.

Recall from Section 14.4.1 that the HLS process performs (i) algorithm synthesis and (ii)
interface synthesis (if the interface is not explicitly specified). Here we focus on the former.

Aside from the design files themselves, other inputs to this process are the specification
of a particular target device, and the directives and constraints supplied by the designer. As
will be discussed in Section 14.4.6, these directly influence the implementation produced
by HLS. For the purposes of our current review, we will consider that the target device is
fixed, and the constraints and directives applied are constant.

Algorithm synthesis comprises three primary stages, which occur in the following order:

1. Extraction of data path and control;

2. Scheduling and binding; and

3. Optimisations

Each of these will now be briefly explained in turn.

Extraction of Datapath and Control

The first stage of HLS is to analyse the C/C++/SystemC code and interpret the required
functionality. This may, for instance, include: logical and arithmetic operations; condi-
tional statements and branching; array operations; and loops.

The implementation will have a datapath component, and normally there will also be a
control component. For clarification, here ‘datapath’ processing refers to operations
performed on the data samples, whereas ‘control’ is the circuitry required to co-ordinate
dataflow processing. The nature of the algorithm fundamentally defines both the datapath
and control components but, as we will see in Chapter 15, the designer can take steps
during HLS to minimise the complexity of the control component in particular.
272

CHAPTER 14: Spotlight on High-Level Synthesis
Scheduling and Binding

HLS is comprised of two main processes: scheduling and binding. These are undertaken
on an iterative basis, as shown in Figure 14.7, as one affects the other. The operations
performed in the two processes are summarised below.

• Scheduling is the translation of the RTL statements interpreted from the C code into
a set of operations, each with an associated duration in terms of clock cycles. The
decisions made at this stage are affected by the clock frequency and uncertainty, the
target device technology, and any directives applied by the user.

• Binding is the process of associating the scheduled operations with the physical
resources of the target device. The functional and timing characteristics of these
resources may affect scheduling, and therefore binding information is fed back into
the scheduling process. For instance, the use of DSP48x resources implies a shorter
critical path than an equivalent operator built from logic slices.

For example, if the synthesised algorithm requires that a set of arithmetic operations are
performed, the HLS process must decide how to schedule the operations (how many clock

Technology

Library

User

Directives

Scheduling Binding

Source Files
(C, C++, SystemC)

RTL Files
(Verilog / VHDL / SystemC)

HLS

Figure 14.7: Vivado HLS scheduling and binding processes
273

CHAPTER 14: Spotlight on High-Level Synthesis
cycles to allocate to their completion), and how to bind the operations (i.e. how to map
them to the computational resources on the PL), bearing in mind the target clock
frequency and uncertainty. Recall that the hardware architecture is not conveyed or
specified by the C source code, but rather different architectural variations can be
generated from the source code by applying directives.

The resulting implementation has a set of characteristics, principally in terms of (i)
latency, (ii) throughput, and (iii) the resources used.

To illustrate, let us assume that our C algorithm involves calculating the average of an
array input, consisting of ten numbers. The implied operations are:

• 9 addition operations to find the total; followed by

• A multiplication by 0.1 to calculate the average.

There are a few different options in terms of scheduling and binding these operations.
One possibility is to operate serially over several clock cycles, using a single adder and a
single multiplier. Alternatively, the critical path may permit multiple operations to take
place within one clock cycle at the targeted frequency, resulting in an implementation with
lower latency and higher throughput.

Three variations are depicted in Figure 14.8. Consider in particular the differences in
implementation characteristics between them.

1. The first implementation uses the fewest resources (1 adder and 1 multiplier, both
constructed from logic fabric), and has a latency of 11 clock cycles. This design has
a low throughput — one 11th of the clock rate — because a new operation cannot
start until the last one has finished (we assume that pipelining is not used here — to
be explained later in Chapter 15).

2. Based on the target technology, the HLS process determines that 3 addition opera-
tions can be scheduled per clock cycle, while meeting the timing constraints. This
results in an implementation using more resources on the device, but with a shorter
latency and higher throughput.

3. Finally, it is determined that, if DSP48x slices are used in place of fabric resources,
all operations can take place within one clock cycle. This corresponds to the most
costly implementation, requiring 9 DSP48x slices in total (one each for the first 8
additions, with the last addition and multiplication combined into a single DSP48x
slice), but it has a much reduced latency (1 clock cycle), and a throughput equal to
the clock rate. This style of implementation would of course only be applicable if
274

CHAPTER 14: Spotlight on High-Level Synthesis
timing constraints were met — otherwise Vivado HLS may insert pipelining regis-
ters to meet timing.

By default, the HLS process will optimise area, i.e. it will adopt the first strategy outlined
above, which consumes the fewest resources. The disadvantages of this implementation are
its long latency and low throughput, which may not meet the requirements of the appli-
cation. However, the designer can exert influence by constraining and directing the HLS
processes of scheduling and binding, and thus optimising in a different way.

Optimisations

As mentioned above, the designer has mechanisms available to drive the high-level
synthesis process towards his or her implementation goals. There are two methods which
can be used to dictate the behaviour of the HLS process, and hence influence the results:

• Constraints — The designer places a limit on some aspect of the design. For
instance, the minimum clock period may be specified. This makes it easy to ensure

time

(1)

(2)

(3)

latency = 5

latency = 11

latency = 1

Key:

Adder (fabric)

Multiplier (fabric)

Adder (DSP48x)

Multiplier (DSP48x)

R
e
s
o
u
rc
e
s

Figure 14.8: Comparison of three possible outcomes from HLS for an example function
275

CHAPTER 14: Spotlight on High-Level Synthesis
that the implementation meets the requirements of the system into which it will be
integrated. Similarly, the designer may choose to constrain resource utilisation or
other criteria, with the aim of optimising the design for the application in hand.

• Directives — The designer can exert more specific influence over aspects of the RTL
implementation via directives. There are various types of directive available which
map to certain features of the code, enabling the designer to dictate, for example,
how the HLS engine treats loops or arrays identified in the C code, or the latency of
particular operations. This can yield significant changes to the RTL output.
Therefore, with knowledge of the available directives, the designer can optimise
according to application requirements.

A Note on the RTL Output

The user has the option to specify the RTL language for the generated output files, and
can choose from VHDL, Verilog, and SystemC. It is, of course, notable that SystemC is also
one of the available input languages for HLS, and therefore it might initially seem curious
that it is also listed as an output type. However, the SystemC file produced as an output of
HLS is an RTL description of the hardware, i.e. a lower-level representation than the input
to HLS. In the same way as for the other HLS output languages (VHDL and Verilog), the
implementation is based on the chosen target device. This output can be particularly useful
in verifying the design where an RTL simulator is not available.

14.4.6. Solutions: Exploring the Design Space

A Vivado HLS project is comprised of a set of design files, a set of testbench files, and
project settings, The project can have multiple solutions — this is an important term
because it relates to the theme of “exploring the design space”, i.e. generating a selection of
possible implementations which can be compared, and the most suitable version chosen.

It is important to recognise that each solution is a different implementation of the same
C/C++/SystemC source code. The differences in the synthesised RTL solution are deter-
mined by four factors:

• The target technology and part (e.g. Virtex-7, Kintex-7, Zynq-7000...)

• The target clock frequency

• The implementation constraints applied

• User defined synthesis directives
276

CHAPTER 14: Spotlight on High-Level Synthesis
For a given application, the first two of these (target technology and part) are likely to
remain constant, and the designer exerts influence over the generated solutions by varying
the implementation constraints and synthesis directives, as discussed in the previous
section. These will be defined in more detail as they relate to interface and algorithm
synthesis in Chapter 15. Once created, each solution contains information about the target,
the applied directives and constraints, and the results obtained.

As will be discussed in detail in the next chapter, the results obtained for a set of
solutions can differ according to resource cost, throughput, and latency. These can be
explored, and further refined, according to the requirements of the task.

14.4.7. Vivado HLS Library Support

It is worth noting that Vivado HLS includes support for arithmetic and mathematical
functions, as well as linear algebra, video processing, DSP and others. Full details of library
support is available in [33].

14.5. HLS in the Design Flow for Zynq

In Section 14.4.2, the design flow for Vivado HLS was reviewed as an independent
process. However, we must also set it in context of the design flow for Zynq.

HLS is a design method for creating functional modules, or IP blocks, for inclusion in a
Zynq-based system. IP blocks designed using HLS are for implementation in the PL part of
the target Zynq device. There may be multiple such modules in a particular Zynq system
design, and part of the task involves appropriately interfacing them to the rest of the design
(using for example AXI connections). Referring back to Figure 3.2 on page 53, this corre-
sponds to the stage marked ‘Vivado HLS / HDL / System Generator’ — modules are created
using Vivado HLS for integration into the design as IP blocks.

While Vivado HLS can be used to describe commonly used functional modules such as
FIR filters and FFTs from first principles, the designer should be aware that dedicated and
optimised support for these operations already exists, and is accessible via the IP Catalog of
IP Integrator, or the Xilinx BlockSet of the System Generator tool. The same functionality
can be introduced into the Vivado HLS design by calling a function (e.g. an FFT or FIR
function) from a supplied library — details of these functions can be obtained from the
Vivado Design Suite User Guide: High-Level Synthesis [33]. HLS is also a very powerful
method for developing custom functionality that does not have a direct equivalent in the
existing catalogue of IP.
277

CHAPTER 14: Spotlight on High-Level Synthesis
14.6. Chapter Review

This chapter has reviewed the concept of high-level synthesis, and explained its growing
significance as a design method, particularly in the context of Zynq and SoC design. HLS
permits an algorithm to be defined at a high level of abstraction using a software language,
and it is subsequently converted into an RTL description with the aid of a high-level
synthesis tool. This design method has the potential to greatly enhance productivity in
terms of both design entry and verification effort.

The Vivado HLS tool was introduced, and its design flow described. It was noted in
particular that, in addition to synthesis itself, the Vivado HLS flow also integrates facilities
for streamlined verification at a functional level, and also subsequently for validation of the
generated RTL code.

Towards the end of the chapter, we reviewed the processes underpinning HLS, and the
mechanisms available to the designer to exert influence over the behaviour of these
processes, and hence the results obtained. Standard implementation metrics and consider-
ations were outlined, and it was noted that multiple ‘solutions’ can be generated from the
same set of Vivado HLS input files. This permits detailed exploration of the implemen-
tation possibilities, evaluation in terms of key metrics, and optimisation with respect to the
designer’s priority criteria.

In the next chapter, we will build upon this conceptual framework by taking a detailed
look at the creation of designs using Vivado HLS.

14.7. References

Note: All URLs last accessed June 2014.

[1] Accellera Systems Initiative website,
available: http://www.accellera.org/

[2] P. Banerjee, “Overview of a compiler for synthesisizing MATLAB programs onto FPGAs”, IEEE
Transactions on VLSI Systems, Vol. 12, Issue 3, March 2004, pp. 312-324.

[3] Berkeley Design Technology, Inc., “An Independent Evaluation of: High-Level Synthesis Tools for Xilinx
FPGAs”, consultation paper, 2010.
Available: http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf

[4] J. Bier and J. E. White, “BDTI Study Certifies High-Level Synthesis Flows for DSP-Centric FPGA Design”,
Xilinx Xcell Journal, Issue 71, second quarter 2010, pp. 12 - 17.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell71.pdf
278

http://www.accellera.org/
http://www.xilinx.com/publications/archives/xcell/Xcell71.pdf
http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf

CHAPTER 14: Spotlight on High-Level Synthesis
[5] D. C. Black, J. Donovan, B. Bunton and A. Keist, SystemC: From the Ground Up, 2nd Edition, Springer,
2009.

[6] M. Burton, J. Aldis, R. Günzel and W. Klingauf, “Transaction Level Modelling: A reflection on what TLM is
and how TLMs may be classified”, Forum on Design Languages, 2007, pp. 92-97.

[7] Cadence, C-to-Silicon Compiler webpage,
Available: http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx

[8] J. M. P. Cardoso and H. C. Neto, “Towards an Automatic Path from Java Bytecodes to Hardware Through
High-Level Synthesis”, Proceedings of the IEEE International Conference on Electronics, Circuits and Systems,
1998, vol. 1, pp. 85-88.

[9] D. Gajski and R. Kuhn, “Guest Editors’ Introduction: New VLSI Tools”, Computer, vol. 16, no.12, pp.11 - 14,
December 1983.

[10]D. Gadski, T. Austin and S. Svoboda, “What Input-Language is the Best Choice for High Level Synthesis
(HLS)?”, panel session, Proceedings of the 47th ACM/IEEE Design Automation Conference (DAC), pp. 857-
858, June 2010.

[11]D. Große and R. Drechsler, Quality-Driven SystemC Design, Springer, 2010.

[12]R. Gupta and F. Brewer, “High-Level Synthesis: A Retrospective” in High-Level Synthesis: From Algorithm to
Digital Circuit, edited by P. Coussy and A. Morawiec, Springer, 2008.

[13]M. Haldar, A. Nayak, A. Choudhary and P. Banerjee, “FPGA Hardware Synthesis from MATLAB”,
Proceedings of the 14th International Conference on VLSI Design, January 2001, pp. 299-304.

[14]IEEE Computer Society, “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE Std
1666-2011, January 2012.

[15]Impulse Accelerated Technologies, Impulse CoDeveloper C-to-FPGA Tools product webpage.
Available: http://www.impulseaccelerated.com/products_universal.htm

[16]International Organization for Standardization, “ISO/IEC 9899:2011: Information technology -
Programming languages - C”, 2011.

[17]International Organization for Standardization, “ISO/IEC 14882:2011: Information technology -
Programming languages - C++”, 2011.

[18]B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, 1978.

[19]T. Kuhn and W. Rosenstiel, “Java Based Object Oriented Hardware Specification and Synthesis”,
Proceedings of the Asia and South Pacific Design Automation Conference, 2000, pp. 579-581.

[20]M. C. McFarland, A. C. Parker, and R. Camposano, “The High-Level Synthesis of Digital Systems”,
Proceedings of the IEEE, vol. 78, no.2, pp 301 - 318, Feb 1990.

[21]G. Martin and G. Smith, “High Level Synthesis: Past, Present and Future”, IEEE Design and Test of
Computers, Vol. 26, Issue 4, July/August 2009, pp. 18 - 24.

[22]A. Mathur, E. Clarke, M Fujita, and R. Urard, “Functional Equivalence Verification Tools in High-Level
Synthesis Flows”, IEEE Design & Test of Computers, July/August 2009, pp. 88 - 95.
279

http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx
http://www.impulseaccelerated.com/products_universal.htm

CHAPTER 14: Spotlight on High-Level Synthesis
[23]Mathworks, HDL Coder product webpage.
Available: http://www.mathworks.com/products/hdl-coder/

[24]Mentor Graphics, Handel-C Synthesis Methodology webpage.
Available: http://www.mentor.com/products/fpga/handel-c/

[25]M. Meredith and S. Svoboda, “The Next IC Design Methodology Transition is Long Overdue”, Open
SystemC Initiative, February 2010.
Available: http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/
ic_design_transition_feb2010.pdf

[26]D. M. Ritchie, “The Development of the C Language”, Proceedings of the 2nd History of Programming
Languages Conference, Cambridge, Massachusetts, April 1993.

[27]M. Santarini, “Xilinx Unveils Vivado Design Suite for the Next Decade of ‘All Programmable’ Devices”,
Xilinx Xcell Journal, Issue 79, second quarter 2012, pp. 8 - 13.
Available: http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf

[28]R. Thomson, V. Chouliaras and D. Mulvaney, “The Hardware Synthesis of a Java Subset”, Proceedings of the
Norchip Conference, 2006, pp. 217-220.

[29]H. Trickey, “Flamel: A High-Level Hardware Compiler”, IEEE Transactions on Computer-Aided Design, Vol.
CAD-6, No. 2, March 1987, pp. 259 - 269.

[30]Xilinx, Inc., Press Release: “Xilinx Acquires AutoESL to Enable Designer Productivity and Innovation with
FPGAs and Extensible Processing Platform”, 30th January, 2011.
Available: http://press.xilinx.com/2011-01-30-Xilinx-Acquires-AutoESL-to-Enable-Designer-
Productivity-and-Innovation-With-FPGAs-and-Extensible-Processing-Platform

[31]Xilinx, Inc., “UG634 - AccelDSP Synthesis Tool User Guide”, v11.4, December 2009.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/acceldsp_user.pdf

[32]Xilinx, Inc., “UG871 - Vivado Design Suite Tutorial: High Level Synthesis”, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-
level-synthesis-tutorial.pdf

[33]Xilinx, Inc, “UG902 - Vivado Design Suite User Guide: High-Level Synthesis”, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2014_1/ug902-vivado-
high-level-synthesis.pdf

[34]J. Yi and H. Kwon, “Samsung’s Viewpoints for High-Level Synthesis” in High-Level Synthesis: From
Algorithm to Digital Circuit, edited by P. Coussy and A. Morawiec, Springer, 2008.
280

http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://press.xilinx.com/2011-01-30-Xilinx-Acquires-AutoESL-to-Enable-Designer-Productivity-and-Innovation-With-FPGAs-and-Extensible-Processing-Platform
http://press.xilinx.com/2011-01-30-Xilinx-Acquires-AutoESL-to-Enable-Designer-Productivity-and-Innovation-With-FPGAs-and-Extensible-Processing-Platform
http://www.xilinx.com/publications/archives/xcell/Xcell79.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/ic_design_transition_feb2010.pdf
http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/ic_design_transition_feb2010.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/acceldsp_user.pdf
http://www.mentor.com/products/fpga/handel-c/
http://www.mathworks.com/products/hdl-coder/

15

Vivado HLS:

A Closer Look

ne of the most significant developments in the Xilinx design methodology has been
the introduction of a capable tool for high-level synthesis: Vivado HLS. Having established
the motivation for HLS in the previous chapter, we now take a detailed look at the methods
used to design with Vivado HLS.

In doing so, this chapter will cover several topics, including the specification of data
types and implications for circuit synthesis, the creation of port and block-level interfaces,
and aspects of algorithm synthesis. The use of directives and constraints to influence the
solutions produced by HLS will also be demonstrated.

It must be noted that the facilities of HLS are so broad and varied that there is simply not
enough space in this chapter to cover everything, so instead we aim for an appealing intro-
duction, and direct the reader to [17], [18], and [19] for more detailed review and tutorial
material. This chapter will, however, present a case study focussing on loops, which acts as
a good basis to demonstrate a some of Vivado HLS’s features and optimisations, and thus to
provide the reader with a taste of what can be achieved with HLS.

As with other components of the Vivado Design Suite, there is an emphasis on
integration and design reuse, and therefore Vivado HLS includes facilities for packaging IP
for convenient integration into system designs. We will briefly review this aspect of the tool
towards the end of the chapter.

O

281

CHAPTER 15: Vivado HLS: A Closer Look
15.1. Anatomy of a Vivado HLS Project

It is useful to begin by with a high-level model of the Vivado HLS synthesis process.
(Note that simulation and verification are also undertaken using the C testbench (and an
automatically generated RTL version of the C testbench), as was previously described in
Section 14.4.3 on page 269.)

The inputs to the process are:

• C, C++ or SystemC files — These contain the functions to be synthesised. In a
simple design, there may be a single file containing a single function, or in a more
complex case, a hierarchy of sub-functions and multiple files.

• C testbench files — The C testbench files form the basis for verifying both the C
code and the RTL code generated by the HLS process.

• Constraints — The designer supplies a timing constraint (desired clock period),
along with a clock uncertainty figure and details of the target device. Together, these
influence the synthesis process along with directives.

• Directives — Directives applied by the designer influence the style of implemen-
tation generated from the high-level description (input C code), for instance in
terms of pipelining and parallelism.

The outputs produced are as listed below. The designer is able to choose which of these
are created.

• SystemC model — This is an RTL-level model of the output from the HLS process,
i.e. a different style of description that an input SystemC file. This SystemC output is
not intended for synthesis, but only for RTL simulation.

• VHDL or Verilog files — The Vivado HLS process generates an RTL-level output in
the VHDL or Verilog language, depending on user preference. This is synthesisable
code that could be integrated into a project and used to generate a bitstream (*.bit
file) for programming an FPGA or Zynq device.

• Packaged IP for Vivado, System Generator, or XPS — The packaged outputs are
convenient for direct inclusion into an IP Integrator project, XPS project, or System
Generator design.

The various files outlined above form the basis of a Vivado HLS project. Next, we will
move on to introduce the Vivado HLS development environment.
282

CHAPTER 15: Vivado HLS: A Closer Look
15.2. Vivado HLS User Interfaces

The Vivado HLS tool provides both a Graphical User Interface (GUI) and a Command
Line Interface (CLI), which may be used separately or in conjunction with each other
according to individual preference. Both methods provide access to the same set of
functionality, and offer different advantages from a user perspective.

Vivado HLS

Synthesis

optional

sub-

functions

C, C++ or SystemC

(input files for synthesis)
C testbench

Directives

Constraints

SystemC

RTL model
VHDL /

Verilog

Packaged IP

(Vivado / XPS /

System Generator)

synthesisable outputs

Figure 15.1: An overview of the Vivado HLS synthesis process
283

CHAPTER 15: Vivado HLS: A Closer Look
15.2.1. Graphical User Interface

The Vivado HLS GUI is similar to software development environments, providing facil-
ities for managing projects, code editing, and debugging. Additionally, there HLS-specific
features for directing the HLS process and evaluating the synthesised hardware. It is useful
to highlight these, and the sections following provide a brief overview of each.

Figure 15.2 provides clarification of how these specific components relate to the Vivado
HLS GUI. The GUI actually provides three different perspectives: Debug, Synthesis and
Analysis, which by default lay out the GUI with relevant information panes. The facilities
highlighted here relate to the Synthesis and Analysis perspectives.

Synthesis Perspective: Project Organisation

The iterative nature of Vivado HLS development is based on the concept of ‘solutions’ —
alternative implementations of the same source code, generated on the basis of different
guidance from the user. The structure of Vivado HLS projects reflects this: there are
separate folders for the source code and testbench, together with any included header files,
and a set of solution folders. Each solution represents a different implementation, and
contains files, reports and results relating to that implementation; the user can generate as
many solutions as required, and then evaluate and compare them. At any one time, only
one of the solutions is said to be ‘active’, and the subject of directives and analysis.

The project structure of an example project is shown in Figure 15.2, where the active
project is shown in bold. There are also folders for the HLS output files and reports.

Synthesis Perspective: Directives Pane

Vivado HLS also features a pane for setting up and managing directives, which influence
how the HLS process behaves. The Directives pane reflects the ‘active’ solution only, and is
only visible when the source code is open in the main window.

Note that directives can be either:

• Kept separate from the source code, as TCL commands within a directives file; or

• Integrated into the source file as pragmas.

The choice of inserting directives into the code, or applying them in a separate file,
affects how the directives appear in the Directives pane. As indicated in Figure 15.2, a hash
(#) symbol indicates a pragma (incorporated into the source code), while a percentage sign
(%) indicates a directive located in the dedicated directives file.
284

CHAPTER 15: Vivado HLS: A Closer Look
Debug Perspective:

Synthesis Perspective:

Analysis Perspective:
active

solution

HLS

synthesis

report

pragma

directive

directive

Figure 15.2: Overview of Vivado HLS GUI perspectives
285

CHAPTER 15: Vivado HLS: A Closer Look
There are advantages to both approaches, and these will be discussed in Section 15.4.6,
in the context of interfaces.

Synthesis Perspective: Synthesis Report

Vivado HLS produces a synthesis report for each solution, which represents a consoli-
dated set of statistics relating to that particular implementation. The details include:

• Clock information, and comparison with constraints;

• Latency statistics;

• Details of loops identified within the code (e.g. trip count, latency per loop);

• The estimated cost of the implementation, in terms of different PL resources;

• A list of the synthesised RTL interface ports, including their directions, dimensions
and associated protocols.

A separate comparison report can be generated for a specified set of solutions. This
permits direct comparison of key implementation metrics across solutions, and it is a very
useful facility for iterating towards the optimum solution.

Analysis Perspective

Aside from the synthesis results, there is also an analysis perspective available in the GUI
which presents a graphical visualisation of the synthesised design, in terms of operations
and controls steps. This information is linked to resources, and also cross-references to the
C/C++ code from which it was originally synthesised.

The analysis perspective is useful because it permits the designer a deeper appreciation
of how the design has been synthesised, and thus informs further iterations. Viewing the
details of the synthesised design helps the designer to identify operations which cause
bottlenecks, and which may benefit from further optimisation.

The Analysis perspective will be discussed further in Section 15.6.

15.2.2. Command Line Interface (CLI)

The command line interface / TCL scripting method is well suited when performing
repetitive or prescribed tasks, because the required steps can be performed in an automated
fashion, thus saving time and ensuring reproducible results.
286

CHAPTER 15: Vivado HLS: A Closer Look
The method of entering commands is via the TCL language. This is an open source
scripting language which is widely used in ASIC and FPGA development. When working
with Vivado HLS, TCL can be used to run basic tasks such as setting up projects and
running simulations, through to driving extensive sets of tests using defined sets of param-
eters and directives. In terms of usage, normally it is convenient to prepare a script in
advance (e.g. ‘my_hls_script.tcl’, to include all of the required settings and commands), and
execute it once. It is also possible to run commands individually by typing them directly at
the prompt.

A comprehensive guide to all TCL commands for Vivado HLS is available, and this is the
key resource for developing scripts to drive the tool [18]. Examples of using scripts are also
incorporated into the Xilinx tutorials for Vivado HLS [17], and some general guidance is
available in a general TCL guide for Vivado Design Suite [16]. You can also gain experience
with this method by following one of the tutorials that accompanies this book — see
Chapter 16 for more details.

15.3. Data Types

When using traditional design methods for FPGAs, the specification of data type is
important as it has a direct effect both on the integrity of the design, and the key metrics of
the implementation (namely resource utilisation, timing performance, and power
consumption). In the case of numerical data types, underspecifying the wordlength
compromises accuracy, while overspecifying can lead to increased resources, inflated
power consumption, and a suboptimal maximum clock frequency. It is therefore necessary
to specify data types carefully.

This aspect is equally important in Vivado HLS as compared to other methods such as
HDL development or block-based design, even if the data types at the point of design entry
are different. Understanding the available C, C++ and SystemC data types, and their
synthesis, is fundamental to developing effective and efficient designs. To that end, this
section will be devoted to reviewing the available types, and explaining how these are
translated into an RTL design and hence into hardware. We will start by considering the
native data types of the C and C++ languages, followed by arbitrary precision types.

15.3.1. C and C++ Native Data Types

The C and C++ languages have several built-in data types which derive from four basic
numeric types: char, int, float and double, as summarised in Table 15.1.
287

CHAPTER 15: Vivado HLS: A Closer Look
In the cases of char, int, and derived types, these are signed by default, but can also be
specified as unsigned (or signed to prevent ambiguity). Notably the standard int type,
and the short, long, and long long versions of the int type, equate to minimum sizes.
Here, typical values are chosen [5], [9].

Table 15.1: Native data types in the C language

Type Description
Number
of Bitsa

a. The numbers of bits for the given types are not fixed according the C language defini-
tion, but depend on implementation. A set of representative values are shown here.

Rangeb

b. The ranges given are based on the above representative lengths of each type in bits.

char Representation of the
basic character set.

8 -128 to 127

signed char 8 -128 to 127

unsigned char 8 0 to 255

short int A reduced precision ver-
sion of int, requiring less
storage.

16 -32,768 to 32,767

unsigned short
int

16 0 to 65,535

int The basic integer data
type.

32 -2,147,483,648 to
2,147,483,647

unsigned int 32 0 to 4,294,967,295

long int In many cases the long
int type will be the same
length as int, i.e. 32 bits.

32 -2,147,483,648 to
2,147,483,647

unsigned long
int

32 0 to 4,294,967,295

long long int An extended precision
integer type.

64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long
long int

64 0 to
18,446,744,073,709,551,615

float Single precision floating
point (IEEE 754)

32 -3.403e+38 to 3.403e+38

double Double precision floating
point (IEEE 754)

64 -1.798e+308 to 1.798e+308
288

CHAPTER 15: Vivado HLS: A Closer Look
There are also some further types of interest, which are briefly summarised below:

• A boolean type, bool, is available on inclusion of the header file ‘stdbool.h’, with the
standard values of {true, false}.

• Support for complex numbers is provided via the ‘complex.h’ library header file. This
relates to the floating point types.

• An extended precision floating point type is defined, long double, although it may
in practice have the same format as the double type.

As may be noted from Table 15.1, the native C / C++ data types lie along 8-bit bound-
aries (8-bit, 16-bit, 32-bit and 64-bit), which arises from the fact that software code is
usually targeted at processors of these dimensions. However, such restrictions are not ideal
from the perspective of generating efficient hardware architectures.

For optimal hardware implementations, no more bits are used than are necessary, due to
the extra implied hardware cost. Arbitrary wordlengths are needed in order to realise
circuits requiring arbitrary levels of precision. In fact, the effect of restricting wordlengths
to those lying on 8-bit boundaries may be exacerbated when targeting certain dedicated
resources of the PL. For example, the multiplication of two 18-bit numbers, A and B, to give
the 36-bit result, S, would require A and B to be represented using 32-bits, and S using 64-
bits. This would lead to an inefficient multiplier implementation, using four DSP48x slices
instead of one — a 300% overhead! (If necessary, refer back to Section 2.2.2 on page 25 for
a review of the DSP48x architecture). Furthermore, any registers or other operations on A,
B, and S, would be over-sized.

Clearly, then, there is motivation to support arbitrary precision data types in a similar
manner to other design entry methods such as HDL and System Generator. Vivado HLS
therefore provides specific support for arbitrary precision C / C++ data types. Additionally,
SystemC features its own arbitrary precision data types as an integral part of the language,
and these are fully supported by Vivado HLS.

15.3.2. Vivado HLS Arbitrary Precision Data Types for C and C++

Having established the need for arbitrary precision arithmetic, i.e. to enable efficient
hardware implementations, the direct outcome is an arbitrary precision integer type.
However, this does not fully satisfy the requirements of most hardware designers, who
normally prefer fixed point arithmetic for certain applications. Therefore, Vivado HLS also
provides an arbitrary precision fixed point type, for use in C++ only.
289

CHAPTER 15: Vivado HLS: A Closer Look
Arbitrary Precision Integer Types

Support for arbitrary precision integer types is achieved using different types and
associated libraries for each of the C and C++ input languages, as detailed in Table 15.2. In
both cases, wordlengths between 1 bit and 1024 bits are permitted, i.e. 1 ≤ N ≤ 1024.

Note that a different compiler (apcc as opposed to gcc) must be used when working with
arbitrary precision integer types in C, as detailed in [18]. This does not apply to C++.

Figure 15.3 shows equivalent snippets of code demonstrating the use of arbitrary
precision integer types in C and C++; notice the slightly different syntax used.

Table 15.2: Arbitrary precision integer data types for use in C and C++ Vivado HLS designs

Language Integer Data Type Description Required Header

C intN
(e.g. int7)

signed integer of N
bits precision

#include “ap_cint.h”

uintN
(e.g. uint7)

unsigned integer of N
bits precision

C++ ap_int<N>
(e.g. ap_int<7>)

signed integer of N
bits precision

#include “ap_int.h”

ap_uint<N>
(e.g. ap_uint<7>)

unsigned integer of N
bits precision

Figure 15.3: The use of arbitrary precision integer types in C (left) and C++ (right)

// C code example
#include “ap_cint.h”

void top_level_function (..)
{
 // declarations

int6 small_signed;
uint10 big_unsigned;
int22 vbig_signed;
...

}

// C++ code example
#include “ap_int.h”

void top_level_function (..)
{
 // declarations

ap_int<6> small_signed;
ap_uint<10> big_unsigned;
ap_int<22> vbig_signed;
...

}

290

CHAPTER 15: Vivado HLS: A Closer Look
Arbitrary Precision Fixed Point Types

Fixed point arithmetic has the generic word format shown in Figure 15.4, with a
specified numbers of integer bits to the left of the binary point, and fractional bits to the
right of the binary point. As for integer binary numbers, the MSB has a positive weighting
for unsigned numbers, and a negative weighting for signed numbers.

For consistency with Xilinx Vivado HLS documentation [17], [18], in our discussions
the overall wordlength is denoted as W, the number of integer bits as I, and the number of
fractional bits as B, i.e. W = I+B. In the example of Figure 15.4, I = 5, B = 7, and W = 12.

Vivado HLS fixed point formats for C++ are defined as in Table 15.3; note that the C
language is not supported. Here, W and I are as defined above; Q is a string specifying the
quantisation mode; O gives the overflow mode; and N specifies the number of saturation
bits in overflow wrap modes (i.e. the N most significant bits are set to 1). Details of these
options can be found in [18]. The latter three are optional arguments; if unspecified, the
quantisation mode, Q, defaults to truncation to zero, and the overflow mode, O, defaults to
wraparound.

In a similar manner to the previous section on integer data types, it is useful to confirm
the syntax for declaring variables using the general type definitions given in Table 15.3.
Figure 15.5 provides a code example in which a selection of variables are created, each with

Table 15.3: Arbitrary precision fixed point data types for Vivado HLS designs

Language Fixed Point Data Type Description Required Header

C++ ap_fixed<W,I,Q,O,N> Signed fixed point
number of I integer bits
and W-I fractional bits.

#include
 “ap_fixed.h”

ap_ufixed<W,I,Q,O,N> Unsigned fixed point
number of I integer bits
and W-I fractional bits.

Figure 15.4: An example of the fixed point word format

I = 5 integer bits B = 7 fractional bits

20212223±24 2-1 2-2 2-72-3 2-4 2-5 2-6weighting:

MS
B

LSB
291

CHAPTER 15: Vivado HLS: A Closer Look
different integer and fractional wordlengths. The use of quantisation and overflow modes
is also demonstrated.

Note that a set of strings are defined for Q (the quantisation mode) and O (the overflow
mode), as listed in Table 15.4 [18], where the defaults are given in bold type.

15.3.3. Arbitrary Precision Types for SystemC

As mentioned earlier, SystemC features in-built support for integer and fixed point
types. Use of these types follows a very similar style to C++, as summarised by Table 15.5.
Note, however, that SystemC provides two different data types to cater for small (up to 64
bit) and large (up to 512 bit) integer wordlengths, whereas C and C++ use a single data type
for up to 1024-bit words.

Code examples for SystemC, and an equivalent set of mode specifiers to Table 15.4, can
additionally be found in [18].

Table 15.4: Quantisation and overflow modes for the C++ ap_fixed and ap_ufixed types
(defaults in bold type)

Parameter String Description

Q

(quantisation)

AP_RND Rounding to positive infinity

AP_RND_ZERO Rounding to zero

AP_RND_MIN_INF Rounding to negative infinity

AP_RND_INF Rounding to infinity

AP_RND_CONV Convergent rounding

AP_TRN Truncation to negative infinity

AP_TRN_ZERO Truncation to zero

O

(overflow)

AP_SAT Saturation

AP_SAT_ZERO Saturation to zero

AP_SAT_SYM Symmetrical saturation

AP_WRAP Wraparound

AP_WRAP_SM Sign magnitude wrap around
292

CHAPTER 15: Vivado HLS: A Closer Look

Table 15.5: Summary of SystemC data types

SystemC Data Type Description Required Preamble

sc_int<W>
sc_bigint<W>

signed integer:
 (up to 64 bits)
 (up to 512 bits)

#include “systemc.h”

sc_uint<W>
sc_ubigint<W>

unsigned integer:
 (up to 64 bits)
 (up to 512 bits)

sc_fixed<W,I,Q,O,N> signed fixed point #define SC_INCLUDE_FX
[#define SC_FX_EXCLUDE_OTHER]
#include “systemc.h”sc_ufixed<W,I,Q,O,N> unsigned fixed point

Figure 15.5: Example C++ code showing declaration of fixed point variables

// C++ code example
#include “ap_fixed.h”

void top_level_function (..)
{
 // declarations

ap_ufixed<8,3> small_unsigned; // 3 int, 5 fract, defaults
ap_fixed<10,4,AP_RND> big_signed; // round to + inf.
ap_ufixed<10,4,AP_RND_ZERO> big_unsigned; // round to zero
ap_fixed<21,10,AP_TRN,AP_SAT> vbig_signed; // trunc., satur.
ap_ufixed<21,10,AP_RND_CONV> vbig_unsigned; // conv. round.
...

}

293

CHAPTER 15: Vivado HLS: A Closer Look
15.3.4. Floating Point Data Types and Operators

Vivado HLS supports the use of floating point data types and operations, in so far as
these map to available cores from the Xilinx technology library. For instance, standard
arithmetic operations such as addition, subtraction, multiplication and division all have
corresponding Xilinx cores, and these can be inferred by Vivado HLS. Further mathe-
matical functions can be also be used on inclusion of the appropriate header files [18].
However, not all floating point operations are supported by HLS, and code should be
written with these restrictions in mind.

To provide an example of compatible floating point operations for HLS, the code
provided in Figure 15.6, which represents multiplication and addition operations on (single
precision) floating point variables, would be successfully synthesised by Vivado HLS using
instances of the floating point adder and multiplier cores. This can be confirmed by
inspecting the reports produced by Vivado HLS.

15.3.5. Validation of Arbitrary Precision Models

It is possible to compare and validate a function based on arbitrary precision arithmetic
against the equivalent function implemented using the native C / C++ data types, the latter
usually being the starting point when developing a Vivado HLS design. This is a rapid and
useful method of tuning the arithmetic wordlengths, i.e. achieving a level of arithmetic
precision that is sufficiently accurate for the purpose, but which does not imply super-
fluous hardware resources.

Models can be developed with two type specifications for a given variable (or variables):
(i) the original, with which the function was initially validated; and (ii) a reduced precision
version, i.e. the candidate for synthesis. Only one of these definitions is adopted within a
simulation at any given time, with the switch being made via a C macro [18]. This means

Figure 15.6: Example code demonstrating the use of the ‘float’ type

// C++ code example
void floating_arith (float *s, float a, float b, float d)
{
 float ab;

 ab = a * b;
 *s = ab + d;
}

294

CHAPTER 15: Vivado HLS: A Closer Look
that functional simulations can be conveniently executed for each of the variable type
definitions, and the results quickly compared, while retaining all parameters from the
original reference design, rather than fundamentally removing or changing them.

If the results indicate that the reduced precision version produces the required results,
then naturally it is preferred for synthesis due to the reduced hardware cost implied.

15.4. Interface Specification and Synthesis

As mentioned in Section 14.4.1, the mechanism for specifying the interface of an HLS
function differs according to the HLS input language: C and C++ support synthesis of the
interface from a high-level description, whereas SystemC requires explicit, manual specifi-
cation (with exceptions). Here we will focus our discussion on synthesis from C and C++.

In Vivado HLS, the input arguments and return value of the designed top-level C/C++
function are synthesised into RTL data ports, each with an associated protocol. Together,
the ports and protocol form a port interface. Port interfaces are used to communicate with
other subsystems and, if applicable, the processor in the system. In addition to the port
interfaces inferred from the C function arguments, block-level protocols and associated
ports are used to coordinate the exchanges of data between subsystems.

 Over the next few pages, we will first consider the top-level C/C++ function definition
from which interfaces are inferred. The synthesis of ports and protocols from this
definition will then be explained, the functionality of block-level protocols will be intro-
duced, and finally, the use of directives to influence the interface synthesis process will be
reviewed.

15.4.1. C/C++ Function Definition

The functional part of a Vivado HLS design is a C/C++ function, which may contain
other sub-functions in a hierarchical manner. The top-level function, i.e. the highest level
of hierarchy, forms the basis of the interface synthesis process.

To provide an example, the code listing in Figure 15.7 represents a simple C design with
the top level function, find_average_of_best_X(). The detailed internal workings of the
function are not of consequence, although the reading/writing operations on each
argument determines the direction of the synthesised ports, as will be covered in Section
15.4.2.
295

CHAPTER 15: Vivado HLS: A Closer Look

The function definition contains three arguments, and it should be interpreted that the
8-element array samples is an input, as is the integer X, while average is an output of the
function. At a simple level, these three function parameters are therefore converted by HLS
into two input interfaces, and one output interface, as shown in Figure 15.8.

Notably, these interfaces may comprise control inputs or outputs in addition to the data
port itself, depending on the protocol adopted. We will return to, and update, this interface
diagram later in the chapter, after introducing the subject of port protocols.

15.4.2. Synthesis of Port-Level Interfaces

Following our intuitive example of interface synthesis in Section 15.4.1, it is useful to
present more formally the conventions adopted when synthesising an RTL port-level
interface from C/C++ code. (Note that block-level interfaces will be covered in Section
15.4.5, and these are distinct from port-level interfaces.)

The RTL-level description of a port includes the following aspects:

Figure 15.7: An example top level function for HLS

void find_average_of_best_X (int *average, int samples[8], int X)

{
 // body of function (statements, sub-function calls, etc.)

}

samples

port interface

X

port interface

average

port interface

find_average

_of_best_X

Figure 15.8: Simplified interface diagram for the example function ‘find_average_of_best_X()’
296

CHAPTER 15: Vivado HLS: A Closer Look
• The name of the port;

• Its direction (input, output or inout);

• The data type and dimension.

Therefore, when designing using Vivado HLS, all of these properties must be synthesised
from the high-level C/C++ code. We will consider each of them during the remainder of
this section.

Port Name

The name of the port is drawn from the name of the corresponding function parameter.
For example, in the function of Figure 15.7, ‘samples’ is an array type input parameter of
the function, and therefore the name ‘samples’ would also be used for the array data port.
An exception is any port synthesised from a function return statement, which is given the
name ‘ap_return’ (and there is no return statement present in our working example).

In some cases, additional control signals and associated ports are synthesised along with
a data port, and this depends on the protocol adopted. We will cover protocols in more
detail in Section 15.4.3, but for now, it is useful to note that any control signals associated
with a synthesised data port will adopt the same name, with the relevant suffixes for the
control types.

Port Direction

The interpretation of port direction follows a set of rules as summarised in Table 15.6.
For example, an argument of the C/C++ function that is only ever read from by the
function, and never written to, will be synthesised into an RTL input port. Likewise, an
argument that is always written to, and never read from, will be translated into an output
port.

Table 15.6: Synthesis of port directions

C/C++ Function Argument RTL Port Type

An argument which is read from and never written to in

An argument which is written to and never read from out

A value output by the function return statement out

An argument which is both written to and read from inout (bidirectional)
297

CHAPTER 15: Vivado HLS: A Closer Look
Data Type and Dimension

The data types and dimensions of ports synthesised from C/C++ function arguments
follow the same conventions as for data types in general, as reviewed in Section 15.3. Some
interface protocols (to be reviewed in the next section) require additional control ports to
be generated, and these are generally 1-bit signals, with some exceptions.

15.4.3. Port Interface Protocol Types

In addition to the port itself, an associated protocol defines the style of interchanges
taking place via that port. Vivado HLS specifies a set of available protocols, ranging in
sophistication from ‘none’ (i.e. no explicit protocol) to ‘hs’ (a hand shaking protocol), ‘ack’
(an acknowledgement protocol), and even AXI protocols. A full list of the available
protocols is included below, where the names used in the Vivado HLS tool are given, along
with a brief explanation of each [18].

• ap_none — This is the simplest protocol type, with no explicit interface protocol, no
additional control signals, and no associated hardware overhead. However, there is
an implication that timing of input and output operations is independently and
correctly handled.

• ap_stable — This is a similar protocol to ap_none, in that it does not involve
additional control signals or related hardware. The difference is that ap_stable is
intended for inputs (only) that change infrequently, i.e. that are generally stable
apart from at reset, such as configuration data. The inputs are not constants, but
neither do they require to be registered.

• ap_ack — This protocol behaves differently for input and output ports. For inputs,
an output acknowledge port is added, and held high on the same clock cycle as the
input is read. For outputs ports, an input acknowledge port is added. After every
write to the output port, the design must wait for the input acknowledge to be
asserted before it may resume operation.

• ap_vld — An additional port is provided to validate data. For input ports, a valid
input control port is added, which qualifies input data as valid. For output ports, a
valid output port is added, and asserted on clock cycles when output data is valid.

• ap_ovld — This protocol is the same as ap_vld, but can only be implemented on
output ports, or the output portion of an inout (bidirectional) port.
298

CHAPTER 15: Vivado HLS: A Closer Look
• ap_hs — The _hs suffix of this protocol stands for ‘handshaking’, and it is a superset
of ap_ack, ap_vld, and ap_ovld. The ap_hs protocol can be used for both input and
output ports, and facilitates a two-way handshaking process between the producer
and consumer of data, including both validation and acknowledgement transactions.
As such, it requires two control ports and associated overhead. It is, however, a
robust method of passing data, with no need to ensure timing externally.

• ap_memory — This memory-based protocol supports random access transactions
with a memory, and can be used for both input, output, and bidirectional ports. The
only argument type compatible with this protocol is the array type, which corre-
sponds with the structure of a memory. The ap_memory protocol requires control
signals for clock and write enables, as well as an address port.

• bram — The same as ap_memory, except that when bundled using IP Integrator, the
ports are not shown as individual ports, but grouped together into a single port.

• ap_fifo — The FIFO protocol is also compatible with array arguments, provided that
they are accessed sequentially rather than in random order. It does not require any
address information to be generated, and therefore is simpler in implementation
than the ap_memory interface. The ap_fifo protocol can be used for input and output
ports, but not bidirectional ports. The associated control ports indicate the fullness
or emptiness of the FIFO, depending on the port direction, and ensure that
processing is stalled to prevent overrun or underrun.

• ap_bus — The ap_bus protocol is a generic bus interface that is not tied to a specific
bus standard, and may be used to communicate with a bus bridge, which can then
arbitrate with a system bus. The ap_bus protocol supports single read operations,
single write operations, and burst transfers, and these are coordinated using a set of
control signals. In addition to this generic bus interface, specific support for AXI bus
interfaces can be integrated at a later stage, using an interface synthesis directive.

• axis — This specifies the interface as AXI stream.

• s_axilite — This specifies the interface as AXI Slave Lite.

• m_axi — This specifies the interface the AXI Master protocol.

It is beyond the scope of this chapter to explain in detail the mechanics of each of these
protocols; however, extensive further information can be found in [18], including detailed
timing diagrams, and there are also a number of relevant practical examples in [17].
299

CHAPTER 15: Vivado HLS: A Closer Look
15.4.4. Synthesis of Port Interface Protocols

Having defined the available protocols, we will now concentrate on the synthesis of
specific protocols from the high-level description, and related restrictions.

The designer has the option to choose a protocol for each individual port by supplying
an appropriate directive. The set of supported protocols is restricted according to (i) the
implied port direction, and (ii) the type of the C/C++ function argument, as shown in
Table 15.7 [18]. If the protocol is not explicitly defined via a directive, or if an unsupported
protocol is mistakenly selected, then Vivado HLS will apply the default protocol. The
defaults are also a function of (i) and (ii) above, as indicated in Table 15.7.

Table 15.7: Protocol synthesis: supported types and defaults (S = supported; D = default) [18]

Argument Type
Variable Pointer

Variable Array Reference
Variable

pass-by-value pass-by-reference pass-by-reference pass-by-reference

Interface Typea

a. Reading along the row: I = input port; IO = inout (bidirectional) port; O = output
port.

I IO O I IO O I IO O I IO O

ap_none D - - D S S - - - D S S

ap_stable S - - S S - - - - S S -

ap_ack S - - S S S - - - S S S

ap_vld S - - S S D - - - S S D

ap_ovld - - - - D S - - - - D S

ap_hs S - - S S S S - S S S S

ap_memory - - - - - - D D D - - -

bram - - - - - - S S S - - -

ap_fifo - - - S - S S - S S - S

ap_bus - - - S S S S S S S S S

axis S - - S - S S - S S - S

s_axilite S - S S S S - - - S S S

m_axi - - - S S S S S S S S S
300

CHAPTER 15: Vivado HLS: A Closer Look
Given the dependencies between protocol, port type and direction, it is important to
consider the type of the C/C++ function arguments when developing the high-level C/C++
description. As given by the column headings in Table 15.7, values can be passed into and
out of C/C++ functions using four different argument types, i.e. as: (i) variables; (ii)
pointers; (iii) arrays; and (iv) references. Therefore, a particular argument type corresponds
to a limited set of available protocols. For example, passing an array argument as an input
restricts the set of available protocols to: ap_hs, ap_memory, bram, ap_fifo, ap_bus, axis and
m_axi, with ap_memory as the default.

To link this to the practical issue of design entry, you may wish to refer back to the
function defined in Figure 15.7, and confirm that function has three arguments:

• samples — an array input;

• X — in integer (scalar) input, passed by value;

• average — an output pointer variable.

Then, with reference to Table 15.7, it may be noted that the default protocol for samples is
ap_memory, the default for X is ap_none, and the default for average is ap_vld. Taking into
account the additional control ports required for these protocols, we can update the
synthesised RTL interface originally given in Figure 15.8, to that shown in Figure 15.9.
Notably the data ports are 32 bit, as a result of using the C int data type.

s
a
m
p
le
s

p
o
rt

in
te
rf
a
c
e

X

p
o
rt

in
te
rf
a
c
e

a
v
e
ra
g
e

p
o
rt

in
te
rf
a
c
e

find_average

_of_best_X
32

M
e
m
o
ry

32

3

1 samples_ce0

samples_address0

samples_q0

ap_memory

protocol

X

ap_none

protocol

32

1

ap_vld

protocol

average

average_ap_vld

Figure 15.9: RTL interface diagram for the ‘find_average_of_best_X()’ function,
showing default port level ports and protocols
301

CHAPTER 15: Vivado HLS: A Closer Look
Note also that this diagram shows ports and port-level protocols only — it does not include
any block-level protocols, an aspect to be covered in the next section. The clock signal will
be added later as part of the block-level protocol.

15.4.5. Block-Level Interface Ports and Protocols

In addition to the logical ports inferred from the arguments of the C/C++ function, and
their associated protocols, it is also possible to add block-level protocols to the design
(these may also be referred to as function-level protocols). This provides a mechanism to
control the execution of the subsystem, and it is useful when integrating one or several
Vivado HLS blocks into a system and managing the flow of data between them.

Before defining the protocols, it is worthwhile briefly confirming some terminology,
which we will do with the aid of Figure 15.10. This diagram depicts five blocks in cascade,
with the direction of data flow indicated; in practice there may also be FIFO buffers
between blocks, which are not shown. (Please be aware that, in choosing this example, we
cover one possible use model of Vivado HLS blocks — there is no intention to imply that a
chain of blocks is the only, or indeed the typical, scenario.)

With reference to Block D, blocks to the left of this point (C, B...) would be referred to as
upstream, while blocks to the right (E, F...) would be considered downstream. When consid-
ering the interface between any pair of blocks, the upstream block outputs data and passes
it to the downstream block. For example, with respect to the interface between Blocks C
and D, Block C is the producer of data, while Block D is the consumer of data.

In some cases it is desirable for a block to exert ‘backpressure’ on upstream blocks. In
other words, the consumer block may wish to prevent the producer block from presenting
more data until it is ready to receive it (if necessary, propagating as a ripple effect to further

C D E FB

upstream downstream

producer consumer

direction of data flow

Figure 15.10: Data flow between Vivado HLS blocks
302

CHAPTER 15: Vivado HLS: A Closer Look
upstream blocks). This is one aspect of operation that can be implemented using block-
level control.

There are three types of block-level protocol, and these are listed below according to the
terms used in Vivado HLS:

• ap_ctrl_none — Choosing this option simply means that a block-level protocol is
not added. Instead, control is exerted entirely at the port interface level, using port-
level protocols.

• ap_ctrl_hs — A block-level control protocol with handshaking. An ap_start control
input is asserted to prompt the block to begin operation, and the block produces
three output control signals (ap_ready, ap_idle, and ap_done) to indicate its stage of
operation. Specifically, the ap_ready signal indicates that the block is ready for new
inputs, the ap_idle indicates when it is processing data, and ap_done is asserted when
output data is available. To provide a usage example, the ap_ctrl_hs protocol is
appropriate when a single HLS block is to be interfaced with the controlling
processor.

• ap_ctrl_chain —This protocol is similar to ap_ctrl_hs, but has an additional input
control signal, ap_continue, and is designed for chaining multiple Vivado HLS blocks
together. The ap_continue input indicates the ability of the downstream block to
accept new data, and therefore it can exert backpressure on upstream blocks if
necessary. If ap_continue is de-asserted, the block will complete its current compu-
tation to the stage of presenting the results at the output, but will then stall until
ap_continue is set high again.

If a block-level protocol is used, it operates independently of any port-level protocols
that are adopted on individual ports. There are also two input signals applied to the block
that are added regardless of the block-level protocol chosen: ap_clk and ap_rst. These are
required because the internal operation of the block is synchronous, thus it requires a clock
signal, and because the block must be capable of being externally reset.

As a general point, it is worth noting that an AXI4-Lite bus interface can be applied to
the block-level interface protocol, thus enabling block-level control signals to be passed
between the block and a controlling processor. In some circumstances, it is also possible to
bundle the block-level control ports with the ports for the port-level interfaces, resulting in
a consolidated AXI4-Lite interface [18].

To round off our discussion, let us reconsider our example function, augmented with the
ap_ctrl_hs block-level control protocol (the default), as shown in Figure 15.11. In this case,
303

CHAPTER 15: Vivado HLS: A Closer Look
six additional ports are added: ap_clk and ap_reset (as for all Vivado HLS designs); the
ap_start control input; and the ap_done, ap_ready, and ap_idle control outputs. These new,
block-level interface ports are shown towards the top of the diagram.

15.4.6. Interface Synthesis Directives

Directives are the mechanism by which the designer can exert high-level control over
the implementation of the designed C/C++/SystemC code. Of the HLS directives available,
a subset relate specifically to interface synthesis, and these can be used for both port-level
directives and block-level directives, reflecting the two types of interface as reviewed over
the previous few pages. In addition to explicitly specifying protocols, other aspects of inter-
faces can also be specified, such as the form of array inputs, and the resources used to
implement memories or FIFO buffers.

s
a
m
p
le
s

p
o
rt

in
te
rf
a
c
e

X

p
o
rt

in
te
rf
a
c
e

a
v
e
ra
g
e

p
o
rt

in
te
rf
a
c
e

find_average

_of_best_X
32

M
e
m
o
ry

32

3

1 samples_ce0

samples_address0

samples_q0

ap_memory

protocol

X

ap_none

protocol

32

1

ap_vld

protocol

average

average_ap_vld

1ap_ready

1ap_done

1ap_idle

1 ap_clk

1 ap_rst

1 ap_start

ap_ctrl_hs

protocol

Figure 15.11: RTL interface diagram for the ‘find_average_of_best_X()’ function, showing both
default port level ports and protocols, and default block level ports and protocol
304

CHAPTER 15: Vivado HLS: A Closer Look
Directive Types

There are six types of directive which can be applied to both port-level and block-level
interfaces, as reviewed below.

• Array Map — Combines several arrays to form one larger array, with the goal of
using fewer FIFO or RAM resources and control ports to implement the interface.

• Array Partition — Separates array interfaces into several smaller sections, resulting
in an expanded set of ports, control signals, and implementation resources, but with
increased bandwidth.

• Array Reshape — In this case, an original array is partitioned into smaller arrays,
which are then recombined to form an array with fewer elements, and wider data
elements. This implies fewer memory locations and shorter addresses.

• Interface — This directive can be used to explicitly specify a port-level interface
protocol as one of the available options (as listed in Table 15.7 on page 300), or the
block-level protocol as ap_none, ap_ctrl_block or ap_ctrl_chain, as covered in
Section 15.4.5.

• Resource — A particular resource can be chosen to implement the interface. For
instance, a one or two port RAM can be specified for an ap_memory interface, or an
ap_fifo interface can target a FIFO constructed from a Block RAM or LUTs.

• Stream — This directive specifies the interface as a streaming port, utilising FIFOs
and permitting the depth of the FIFO to be explicitly chosen.

The specification of port-level interface type is made via the corresponding function
argument, while the block-level interface is applied to the top-level function.

By applying the required directives, the design example shown in Figure 15.11 can be
exported to an IP Integrator block as shown in Figure 15.12. The result of consolidating the
port- and block-level interfaces into a single AXI4-Lite interface results is shown in Figure
15.13 (note that the array input samples is separate, as it requires a stream interface). This
is typically done to enable control by software running on a processor or microcontroller.

Further Options

In addition to the directives detailed above, there is also the option to register individual
ports, meaning that an additional clock cycle of delay will be added at the port interface.
This brings a potential improvement to the timing performance of the design.
305

CHAPTER 15: Vivado HLS: A Closer Look
Figure 15.12: An IP Integrator block produced for the “find_average_of_best_X” function, with
port- and block-level protocols as specified in Figure 15.11.

Figure 15.13: An IP Integrator block produced for the “find_average_of_best_X” function, with the
block-level protocol ports, and some port-level protocol ports, combined into an AXI4-Lite interface.

consolidated
XI4-Lite
interface
306

CHAPTER 15: Vivado HLS: A Closer Look
Source File or Directive File?

Directives can be kept together in a separate file within the Vivado HLS project, or
integrated into the source file as pragmas. An example showing the use of pragmas is given
in Figure 15.14. These would be automatically inserted by Vivado HLS, directly into the top
of the function body (as indicated in Figure 15.7 on page 296), thus there is no need to type
these lines of code manually (although you can if you want to!). In both cases, it is useful to
recognise how pragmas are formed.

In the example of Figure 15.14 there are three pragmas: the first two set interface direc-
tives, and the third sets a resource directive. Specifically, the first pragma specifies the
ap_memory protocol for the samples input port, and likewise the second line sets the
ap_vld protocol for the X input port. Notice also that a register is inserted on the X port. The
third directive specifies that the samples input port is implemented using a specific
hardware resource, in this case a single port ROM implemented with LUTs (i.e. using slice
logic as opposed to Block RAM resources).

As the interface is often a static aspect of the system, with the designer concentrating
optimisation efforts on the functional implementation by creating different solutions,
interface directives are commonly implemented as pragmas in the source file. This means
that the interface settings can be easily ported between Vivado HLS solutions, without the
need to re-specify them, or to take particular care when passing directives from one
solution to the next. However, the designer may, for good reason, prefer to specify the
directives via file, thus keeping the directives and source code separate — this is also a
perfectly valid approach.

In a general sense, the insertion of pragmas makes code less portable, and so pragmas
best suited to aspects that the designer intends to fix. For instance, it may be desirable to
use pragmas to fix the configuration of the interfaces in the design.

Aspects that are changed between ‘solutions’ as the designer attempts to optimise his or
her code, should be specified using a separate directives file, so as not to embed them
within the code. Keeping the code and directives separate enables a greater degree of high-
level design flexibility.

#pragma HLS INTERFACE ap_memory port=samples
#pragma HLS INTERFACE ap_vld register port=X
#pragma HLS RESOURCE variable=samples core=ROM_1P_LUTRAM

Figure 15.14: An example of pragmas inserted in the C/C++ source code for interface synthesis
307

CHAPTER 15: Vivado HLS: A Closer Look
15.4.7. Manual Interface Specification

Up until this point, the discussion has focussed on interface synthesis from C and C++
functions, but recall that interfaces can also be explicitly specified. This is compulsory
when coding in SystemC (with the exception of the ap_bus and ap_memory interface types,
which can be synthesised), and optional when coding in C or C++.

Interface Specification in SystemC

In SystemC, any designed component is represented by a C++ class inherited from the
base class, SC_MODULE. This is used to define the interface and functionality of the
component [1].

Specification of interfaces in SystemC is similar to an HDL-level description, and
includes an explicit specification of the type, direction, and dimension of each port. An
example is provided in Figure 15.15 for a simple counter, and this shows the first section of
the my_counter module (class) definition, where the ports are declared. You may notice
the similarities between this code extract and a VHDL entity declaration.

As a result of all port information being manually specified, no synthesis of the interface
is required in this case.

Interface Specification in C/C++

In some circumstances it may be desirable to define an interface which has a different set
of control ports and associated protocol from those available in Vivado HLS. This may be

SC_MODULE (my_counter) {

 // top level ports
sc_in<bool> clk;
sc_in<bool> ce;
sc_in<bool> reset;
sc_out<int> count;

 // the rest of the module body definition...
}

Figure 15.15: Manual definition of the ports of a counter design using SystemC
308

CHAPTER 15: Vivado HLS: A Closer Look
accomplished in C or C++ by adding an extra block of code to specify the control signals
and the required series of transactions on these control ports (recall that these would
normally not be user-specified, but rather the user would specify data ports, with control
ports being included by the HLS process). In a Vivado HLS pragma implementation, the
ordering of transactions is specified with the aid of an ap_wait() function, which instructs
Vivado HLS to insert clock cycles between IO operations within a specifically labelled
section of code (a ‘protocol region’).

 A code example demonstrating this manual interface specification technique can be
found in [18].

15.5. Algorithm Synthesis

The theme of this section is the synthesis of functional hardware from designed C/C++/
SystemC code. The limited scope of this chapter precludes a detailed treatment of all
aspects, and rather we focus on a few topics that are of key interest, and representative of
the design methods necessary to successfully develop systems using Vivado HLS. In other
words, the content that follows in this section should be considered a ‘taster’ of the
processes and possibilities of HLS algorithm synthesis, and not a comprehensive guide.
Extensive further information can be found in the Xilinx User Guide 902, “Vivado Design
Suite User Guide: High-Level Synthesis” [18].

One particular aim of this section is to highlight the control that the designer can exert
over the eventual, synthesised hardware implementation through the use of directives, and
the opportunities for readily generating and comparing alternatives without the need to
significantly change the source code. We accomplish this through a feature case study on
the synthesis of loops.

The remainder of this chapter will consider algorithm synthesis from select different
styles of C designs, with illustrative examples. However, before doing so, it is important to
recognise the metrics used to evaluate and constrain Vivado HLS designs in general.

15.5.1. Implementation Metrics and Constraints

As HLS translates the algorithm expressed by a C/C++/SystemC function into hardware,
quantities are required to measure the characteristics of the implementation. This is
especially useful when comparing implementation variations, i.e. the set of Vivado HLS
‘solutions’ generated by applying different directives to the HLS process.

Limits based on implementation metrics can be input by the user, and act as design
constraints. These influence the behaviour of Vivado HLS in executing high-level
309

CHAPTER 15: Vivado HLS: A Closer Look
synthesis: the tool attempts to meet the targets set where possible and, if it cannot meet
them, it instead produces a ‘best effort’ RTL design. The rest of this section is devoted to
defining the various metrics that may be used to both benchmark and constrain an HLS
design.

Area / Resources

The most intuitive measure of an implementation is the hardware cost of building the
circuit, in terms of the resources (or equivalently ‘area’) on the FPGA or PL. With resources
inherently fixed for a particular target device, there may be motivation to minimise the cost
of a particular Vivado HLS component, depending on the requirements and circumstances
of the system as a whole.

By default, Vivado HLS seeks to minimise area, which implies time-sharing of hardware.
This generally leads to increased latency and reduced throughput (both defined below).

Clock Period, Clock Rate, and Clock Uncertainty

The clock period metric expresses the minimum period and inversely the maximum
clock frequency that can be supported by a design. It is a function of the physical character-
istics of the target device, as well as the critical path of the RTL design synthesised from
HLS. The critical path is defined as “the longest combinatorial logic path between two
clocked elements”, and it directly limits the maximum clock frequency. Critical path is
normally managed in hardware designs via pipelining techniques (i.e. the strategic
insertion of registers) and, in similar fashion, can be influenced by the use of pipelining in
Vivado HLS.

Vivado HLS prompts the user to specify a target Clock Period, together with a Clock
Uncertainty, and together these act as timing constraints. Where possible, the tool creates a
design to meet the target minus the uncertainty value, based on Xilinx technology library
information. The uncertainty figure is included to cover other factors not known at the
HLS stage, in particular RTL synthesis, placement, and routing delays [18].

Latency

In Vivado HLS, the term ‘latency’ adopts its usual definition as the number of clock
cycles between applying an input, and achieving the corresponding output. Latency can be
examined at different levels of hierarchy, from the top-level function down to sub-
functions, loops or specific sections of code. In the context of loops, latency refers to the
completion of all iterations of the loop; the term iteration latency is used when referring to
310

CHAPTER 15: Vivado HLS: A Closer Look
a single iteration. The total latency is equal to the iteration latency, multiplied by the
number of iterations of the loop (the ‘trip count’).

Latency can also be specified as a design constraint, i.e. the maximum acceptable latency
is defined by the user, and the Vivado HLS tool optimises the design (where possible) to
meet the requirement.

Initiation Interval and Throughput

The Iteration Interval (II) is the number of clock cycles that separate the acceptance of
inputs to the Vivado HLS design. Without applying directives, the initiation interval and
latency may be the same, because the default behaviour of Vivado HLS is to optimise for
area, resulting in a serial design. However, the strategic use of pipelining can reduce the
iteration interval to much less than the latency of the design. On the other hand, this may
increase the area of the design, so there is a trade-off involved.

Initiation interval corresponds directly to throughput, and is analogous to the
relationship between clock period and clock frequency. Throughput expresses the rate at
which data can be passed through the system. The best possible initiation interval is 1,
meaning that new input samples can be accepted on every clock cycle, in which case the
throughput is equivalent to the clock rate. Higher levels of throughput can sometimes be
achieved through use of partial loop unrolling, or by replicating a synthesised function.

15.5.2. Data Types

As for interface synthesis, the choice of data types in a high-level algorithm has a funda-
mental impact on the synthesised hardware. The use of wordlengths that are longer than
required can lead to a needlessly expensive implementation, in terms of the amount of PL
resources required to create the design. It also has the potential to impact on other imple-
mentation metrics, such as latency, maximum clock frequency, and initiation interval.

The use of arbitrary precision data types, as reviewed in Section 15.3, is an effective
mechanism for specifying appropriate wordlengths and hence contributing to an efficient
overall implementation.

15.5.3. Pipelining

The term ‘pipelining’ is widely used in the context of hardware design to refer to the
insertion of registers into a circuit, usually for the purpose of minimising the critical path
(i.e. the longest combinatorial logic path between clocked elements), and hence maxim-
ising the achievable clock frequency. Consequently, we can think of data samples moving
311

CHAPTER 15: Vivado HLS: A Closer Look
along the processing path in a regular, synchronous fashion, with storage of intermediate
samples in the pipeline registers. Alternatively, it could be said that the samples are “in a
pipeline”.

When the term is used to refer to processor operation, it means that a task is broken
down into a regular structure of subtasks that can be performed simultaneously by
different ‘pipeline stages’ of the processor. The number of pipeline stages, and the opera-
tions performed by each of them, are fixed features of the processor architecture. For
instance, a 5-stage pipeline might allow the processor to simultaneously: (i) read an
instruction; (ii) decode an instruction; (iii) read data; (iv) execute; and (v) write a result, all
on the same clock cycle, using a dedicated pipeline stage for each. Individual pipeline stages
process consecutive samples, meaning that a new output can be computed on each clock
cycle.

 In HLS, pipelining has a meaning which is related to both of the above, but distinct. In
particular, we can define the concept of pipelining as referring to the partitioning into sub-
stages of an arbitrary set of dependent operations, whether these are combinatorial or
clocked.

To define HLS pipelining further, we must abstract the detail of low-level operations and
consider that pipelining relates to the segmentation of logical processing stages. Unlike the
hardware case, these are not necessarily physical, combinatorial processing elements
(although they could be). Pipelining is incorporated to permit the overlapping of opera-
tions, similar to the concept of pipelining in processors. However, unlike processors with
fixed architectures, there are no restrictions on the nature of the operations themselves,
because the FPGA fabric or Zynq PL provides a blank canvas with which to implement any
arbitrary functionality.

The motivation for pipelining is to provide an opportunity for parallel processing, and
thus to increase the throughput supported by the design. Pipelining can be applied as a
directive in Vivado HLS, at the level of functions and loops. Over the next few pages, we
will consider the pipelining of operations, while the pipelining of loops will be covered in
Section 15.5.5.

Algorithm Execution and Data Dependency

It may be assumed that any algorithm expressed in software includes a set of functional
steps, or operations. Each step depends on a certain set of data samples being available as
inputs, and in some cases these data samples may not be available until a previous step has
been completed. Consequently, there is an implied data dependency between the steps
forming the algorithm, and a required order of execution.
312

CHAPTER 15: Vivado HLS: A Closer Look
A direct synthesis of the algorithm may therefore lead to a set of operations which must
logically occur at the same time, due to the data dependency between them. In other
words, all operations belong to the same processing stage, which must be entirely
completed before new inputs can be processed. Whether the execution of the stage corre-
sponds to a single clock cycle or multiple clock cycles, the important point is that there is
no opportunity to begin computing the next output until the previous one has been
completed.

To give a simple example, consider a function given in Figure 15.16, which comprises
three processing steps, Op1, Op2, and Op3. The second step, Op2, relies on the outputs of
the first step, Op1, while Op3 depends on the outputs from Op2. As such, and with no
memory to store intermediate results, there is a dependency between the operations: the
final output is generated only after all operations have been completed (in order).
Therefore we can designate the group of Op1, Op2, and Op3 as a processing stage.

In terms of processing data, the data dependency within the stage means that only one
sample output can be processed at a time; the three operations must run sequentially on
each set of input samples, and the next set of inputs cannot be accepted until the current
output is ready. Thus the data sample period is equivalent to the total processing time of
Op1, Op2, and Op3, and this directly governs the data throughput supported by the design.
The other important metric, input-to-output latency, is equivalent to the individual
latencies of the three operations. Both of these are indicated on the waveforms shown in
Figure 15.17.

It may be noted that a clock signal is not drawn in Figure 15.17, and this is deliberate. At
an abstract level, Op1, Op2, and Op3 may represent logic in a combinatorial path or a set of
clocked operations. In fact, as pipelining has the effect of separating the stages, it will result
in increased throughput irrespective of whether the circuit is clocked or combinatorial.

Op1 Op2 Op3input(s)

operations

processing

“stage”

output(s)

data dependency

Figure 15.16: Example function with data dependencies between operations
313

CHAPTER 15: Vivado HLS: A Closer Look

Pipelining an Algorithm

Pipelining means that the processing stage is split up into smaller stages that can each
process different data samples simultaneously. In other words, the data dependencies that
caused a set of operations to be grouped together are broken up, and this allows the
operators to execute in parallel.

In hardware terms, the method used to achieve this separation of stages is to insert
registers between the new, smaller stages, which allows data samples to be held in memory.
A direct consequence is that the overall latency from input to output increases with respect
to the sample period (a disadvantage), however the sample period can be reduced because
the stages are shorter. The latter has a direct impact on throughput, which is normally
considered the more important performance metric. A further benefit is that, where the
original stages represent a combinatorial logic path, the insertion of pipeline registers may
also cause an increase in the maximum supported clock frequency.

From a hardware-oriented perspective, the pipelined function is equivalent to the signal
flow graph shown in Figure 15.18. As before, the final outputs depend on signals that have
rippled through Op1, Op2 and Op3, but now there is memory to hold the intermediate
results. The outcome is that the three operators are now free to operate simultaneously,
each acting upon consecutive input data samples as shown in Figure 15.19. This removes
the data dependency between operations, and they can now be considered as each repre-
senting a separate processing stage.

Op1 Op2 Op3 Op1 Op2 Op3 Op1 Op2 Op3 Op1 Op2 Op3 Op1 Op2 Op3

latency

input k-1

output k

input

samples

output

samples

processing

input kinput k-2 input k+1 input k+2

output k-3 output k-2 output k-1 output k+1

time

operations
stage

data sample

period

Figure 15.17: Waveform showing throughput and latency, before pipelining
314

CHAPTER 15: Vivado HLS: A Closer Look

The updated waveform diagram reflects the smaller stages (each effectively a single
operation) and confirms a corresponding shortening of the data sample period. This
means that the throughput has increased by a factor of three. It is also apparent that the
operators can simultaneously compute results for consecutive samples; for instance, Op1
can process sample k+1 as soon as it has finished with sample k, and passed it to Op2. The
latency is now greater with respect to the duration of a single stage, as the inserted pipeline
registers add to the delay between input and output, but this is an acceptable overhead.

Op1 Op2 Op3input(s)

pipeline registers

processing

“stages”

output(s)reg reg

Figure 15.18: Partitioning of operations into separate stages via pipelining

k

k k+1 k+2 k+3 k+4 k+5k-3 k-2 k-1k-6 k-5 k-4k-9 k-8 k-7

k-3 k-2 k-1k-6 k-5 k-4 k+1 k+2 k+3 k+4 k+5 k+6 k+6 k+7

Op1 Op1Op1p Op1p Op1pOp1p Op1p Op1p Op1p Op1p Op1p Op1p Op1p Op1Op Op1Op

Op2Op Op2Op Op2 Op2Op Op2OpOp2 Op2Op Op2Op Op2Op Op2Op Op2Op Op2Op Op2Op Op2Op Op2Op

Op3Op3 Op3Op Op3Op Op3Op Op3OpOp3Op Op3Op Op3Op Op3Op Op3Op Op3Op Op3Op Op3Op Op3Op

data sample

period

stages
operations

time

processing

latency

input

samples

output

samples

Figure 15.19: Waveform showing throughput and latency, after pipelining
315

CHAPTER 15: Vivado HLS: A Closer Look
15.5.4. Dataflow

As discussed in the previous section, pipelining is a method of increasing the concur-
rency of the hardware produced from a software description, and thus improving the
throughput. Pipelining can be performed at the level of operations within a function, or on
loops.

Dataflow pipelining (or simply ‘dataflow’) optimisation is a similar concept, but is
actually applied at a higher level in the design hierarchy: it acts to improve the concurrency
between functions. For example, a top-level design may include four functions, F1, F2, F3
and F4, with data dependencies between them. A direct synthesis of the top-level function
would result in the sub-functions executing in a sequential, non-overlapping manner,
analogous to the grouping together of operations depicted in Figure 15.16 (which is
labelled a processing stage). With dataflow pipelining, the equivalent optimisation to
pipelining is performed, in the sense that registers are inserted between functions to
partition them into separate stages that can execute concurrently.

Given that functions are more complex than simple operations, (which was discussed in
the context of pipelining), dataflow optimisation can actually go a step further, by analysing
the content of functions and the dependencies between them. This might allow a further
degree of function ‘overlapping’, with the effect of shortening overall execution latency as
well as increasing throughput. For instance, it might be possible to start function F2 once
F1 is 50% complete, rather than waiting until it has entirely finished. This is most easily
illustrated by example, and here we will attempt to relate dataflow optimisation it to an
everyday scenario.

Suppose that you went to a coffee shop and it was manned by a single person, whom we
shall name Penelope. Penelope would have to perform multiple functions to serve you. She
would: (i) greet you and take your order; (ii) assemble your requested food; (iii) make your
coffee; and (iv) take payment. Penelope would only be able to serve one person at a time, by
performing all of the above tasks in order: in other words, the latency (i.e. the total time to
serve a customer) and the throughput (the rate of serving customers) would be limited.

For the purposes of illustration, we will assume that the following functions are defined:

• Function F1: take order 3 time units

• Function F2: prepare food 2 time units

• Function F3: prepare coffee 4 time units

• Function F4: accept payment 3 time units
316

CHAPTER 15: Vivado HLS: A Closer Look
Therefore, it will take Penelope a total of 12 time units to serve each customer. She can
only serve one customer at once, so the customer throughput is 1 every 12 time units, and
each customer must wait for 12 time units to complete their purchase.

Matters could be improved by adding more staff. Suppose that Penelope now has the
assistance of Cameron, Hamish, and Isla. Cameron will greet customers and take their
orders, Hamish will assemble food orders, Isla will take payments, and Penelope will make
the coffees. As well as increasing customer throughput, latency can be reduced, because
knowledge of the operations that comprise the functions allows them to be overlapped. For
example, Cameron can ask for drinks orders first (to enable Penelope to start serving them)
and then food orders (to enable Hamish to start assembling them), such that Penelope’s
function can begin before Cameron’s has completed. Likewise, Isla can commence her
function of taking payment at the till as soon as the complete order is known, and while
Penelope and Hamish are still completing their serving functions.

These two variations on the coffee shop scenario are depicted in Figures 15.20 and 15.21.
Originally, as shown in Figure 15.20, only one customer could be served every 12 time
units (analogous to clock cycles), and customers also had to wait for 12 time units to
complete their transactions. This is because Penelope had to do everything by herself, and
could only complete one task (or ‘operation’) at a time.

Notice that, as a result of adding more staff (as in Figure 15.21), one customer can be
served every four time units, rather than one in every 12. There is also a reduction in the
time each customer has to wait, from 12 time units to 4. The improvement in throughput
arises from the increased concurrency (different operations can now take place at the same

Bert

Bob

Bob

coffee
house

F2: food

hi!
? ?

F1: take order

£ $ bye!

F4: payment

hi!
?

F1: take orderoF3: coffee

time unit

time

latency (customer waiting time) = 12 time units

customer

arrivals

completed

orders

customer throughput = 1 per 12 time units

Penelope

Figure 15.20: Coffee shop example without dataflow optimisation
317

CHAPTER 15: Vivado HLS: A Closer Look
time), while the reduction of latency (time a customer has to wait) is attributable to the
overlapping of functions. Simply adding more staff, but having each of them undertake all
functions in order (as Penelope did originally), would still leave Bob, Bert and friends
waiting 12 time units to receive their orders!

We note in Figure 15.21 that the throughput is limited by Penelope’s coffee making
function, which takes 4 time units, whereas all of the others require less time to complete. If
it were possible to pipeline within this function, e.g. to use one or more additional baristas
to prepare the espresso, froth the milk, etc. concurrently, then further improvements could
be achieved.

Bert

Bob

Bob

Bert

Viki Alan

Viki

hi!

F1: take order

hi! ?

F1: take order

F3: coffee

bye!

F4: payment

F2: food

hi!

F1: take order

F3: coffee

bye!

F4: payment

hi!
? ?

F1: take order

F3: coffee

£ $ bye!

F4: payment

coffee
house

F2: food

hihihihi!

1F1: F1:F1:

hihihihi!

1F1: F1:F1:

p y

byebyebye!bybybyeye!

4: paymentF4: paymentF4: paymentF4: payment

3F3: cF3: cF3: cF3: c

hihihihi! ????

1F1: F1:F1:

F4: payment

ebye!bybbybyeye!

F4: paymentF4: paymentF4: paymentF4: payment

F2: F2:F2:

3F3: cF3: cF3: cF3: c

time unit

time

latency = 6 time units

customer

arrivals

completed

orders

customer throughput =

1 per 4 time units

Cameron

Hamish

Isla

Penelope

Figure 15.21: Coffee shop example with dataflow optimisation
318

CHAPTER 15: Vivado HLS: A Closer Look
Similarly to the design of a hardware circuit, adding more concurrency (i.e. employing
more staff) has the effect of improving performance. This is not ‘free’ as obviously the staff
must be paid(!), but it may be desirable in order to obtain performance improvements.

The use of dataflow optimisation can be specified by directive in a similar fashion to
pipelining. As we have seen through this example, the motivation for dataflow optimisation
is to increase the obtainable throughput as a result of concurrent processing, and also to
reduce latency by overlapping functions.

15.5.5. Algorithm Case Study: Loops

Loops are used extensively in software programming, and constitute a very succinct and
natural method of expressing operations that are repetitive in some way. They are also used
in a similar manner in HDLs, for example to iteratively instantiate and connect circuit
components. However, an important difference is that the designer can prompt the loop(s)
to be synthesised in different ways via the mechanism of directives in Vivado HLS. This
contrasts with the use of loops in HDL, where code expressing loops is directly converted
into hardware, usually resulting in prescribed and fixed architectures.

As an important software construct, loops are very well supported by Vivado HLS for
hardware synthesis. Several loop optimisations can be made using directives, allowing the
architecture of the resulting implementation to be altered with few or no changes required
to the software code. During the remainder of this section, we will consider the default
synthesis of loops, and architectural variations that can be achieved through the use of
directives. Simple code examples are chosen in order to clearly make the necessary HLS-
related points.

Default Loop Synthesis

By default, Vivado HLS seeks to optimise area, and therefore unless the designer directs
otherwise, loops are automatically ‘rolled’, meaning that they time-share a minimal set of
hardware. This means that the repetitive operations described by the loop are realised by a
single piece of hardware implementing the body of the loop. To take a simple illustrative
example, if a loop was designed to add the individual elements of two, 12 element arrays,
then conceptually the implementation would involve a single adder (the body of the loop),
shared 12 times according the number of loop iterations.

There is some latency associated with each iteration of the loop, and in this case the
latency is affected by interactions with the memory interfaces at the inputs and output of
the function. Memory interfaces are inferred due to the use of array arguments, according
319

CHAPTER 15: Vivado HLS: A Closer Look
to the default interface protocols as discussed in Sections 15.4.3 and 15.4.4. Additional
clock cycles are also required for entering and exiting the loop.

Code for this example is provided in Figure 15.22. Analysis of HLS synthesis with default
settings shows that the overall latency is 26 clock cycles: 2 cycles each for 12 iterations
(including reading the inputs from memory, adding, and writing the output to memory),
and a further two clock cycles for entering and exiting the loop. Execution is illustrated in
Figure 15.23.

Figure 15.22: Example code for a loop adding the elements of two arrays

void add_array (short c[12], short a[12], short b[12])
{
 short j; // loop variable

 add_loop: for (j=0;j<12;j++) { // loop through elements (x12)
 c[j] = a[j] + b[j]; // addition operation

 }
}

D
a
ta
p
a
th

R
e
s
o
u
rc
e
s

C
o
n
tr
o
l

clock

cycles

enter

loop

exit

loop

addition

x 12

iterations

1

1 124

1 adder, shared 12 times

Figure 15.23: Extraction of addition loop into datapath and control logic
320

CHAPTER 15: Vivado HLS: A Closer Look
Simple Loop Architecture Variations

 The default, rolled loop implementation may not always be desirable, but there are alter-
natives. Directives can be used to specify the architecture as summarised below.

• Unrolled — In a rolled implementation, a single instance of the hardware is inferred
from the loop body and shared to the maximum extent. Unrolling a loop means that
instead the hardware inferred from the loop body is created up to N times, where N
is the number of loop iterations. In practice, the number of instances may be lower
than N if other limiting factors are identified in the design, such as memory opera-
tions. The clear disadvantage of the unrolled version is that it consumes much larger
area on the device than the rolled design, but the advantage is increased throughput.

• Partially unrolled — This constitutes a compromise between rolled and unrolled,
and is typically used when a rolled implementation does not provide high enough
throughput. If a rolled architecture represents minimal hardware cost but maximal
time sharing (lowest throughput), and an unrolled architecture represents maximal
hardware cost but minimal sharing (highest throughput), then we may try to find a
different balance between the two. Control is exerted by the use of directives, and a
number of different positions in the trade-off may be possible.

With reference to the upper section of Figure 15.23, which depicts a rolled architecture,
fully or partially unrolling the loop would cause the number of datapath resources (adders)
to increase, but to be shared to a lesser extent. Meanwhile, in the lower section of the
diagram, the large, central state constituting the addition of array elements would require
fewer clock cycles to complete. When fully unrolled, the implementation effectively does
not contain a loop, and as a result the loop entry and exit clock cycles are saved, too.

With these observations in mind, the decision to select a rolled, unrolled, or partially
unrolled implementation for the loop will be based on the specific requirements of the
application, particularly in terms of the target throughput and any constraint on area utili-
sation that may apply.

Optimisation: Merging Loops

In some cases there might be two loops occurring one after the other in the code. For
instance, the addition loop in the example of Figure 15.22 might be followed by a similar
loop which multiplies the elements of the two arrays. Assuming that the loops are both
rolled (according to the default mode), a possible optimisation in this case would be to
merge the two loops, such that there is only one loop, with both the addition and multipli-
cation operations being conducted within the single loop body.
321

CHAPTER 15: Vivado HLS: A Closer Look
The advantage of merging loops may not be immediately obvious, but in fact it relates to
the control aspect of the design (recall from Section 14.4.5 that the C source code is
analysed and decomposed into datapath and control components as part of the HLS
process). Control is realised in the form of a Finite State Machine (FSM), with each loop
corresponding to at least one state; thus the FSM can be simplified due to the merging of
loops, as this results in fewer loops overall, and thus fewer FSM states. This is demonstrated
by the code examples in Figures 15.24 and 15.25. The first example shows two separate
loops, one each for addition and multiplication of the arrays, while the second shows the
effect of merging the loops to create a single loop.

The add_loop represents 12 iterations of an addition operation (which takes 2 clock
cycles), while the mult_loop represents 12 iterations of a multiplication operation (which
takes 4 clock cycles). Therefore, the overall latencies of the two loops are 24 and 48 clock
cycles, respectively. Merging the loops has the effect that the latency of the new, combined
loop reduces to the longer of the original two loops, i.e. 48 clock cycles. One further clock
cycle is saved due to the removed loop transition, i.e. the ‘exit/enter’ state in Figure 15.24.

The merging of loops can be controlled automatically using a Vivado HLS directive, and
consequently there is no need to make an explicit change to the source code. The code
provided in Figure 15.25 is for illustrative purposes only, i.e. to show the effect of applying
the ‘merge’ directive.

Figure 15.24: Consecutive loops for addition and multiplication within a function

void add_mult (short c[12], short m[12], short a[12], short b[12])
{
 short j;

 add_loop: for (j=0;j<12;j++) {
 c[j] = a[j] + b[j];

 }

 mult_loop: for (j=0;j<12;j++) {
 m[j] = a[j] * b[j];

 }
}

enter

adds

exit/enter

mults

exit

1

24

1

48

1

clock cycles

FSM
behaviour
322

CHAPTER 15: Vivado HLS: A Closer Look
Note that there are some practical restrictions on loop merging, with respect to compat-
ibility and the limits of the loops to be merged. In our simple example, the limits were
equal, but this may not always be the case; guidelines on this issue can be found in [18].

Nested Loops

Another common configuration is to nest loops, i.e. place one loop inside another. There
may even be multiple levels of nesting. To give an example of a 2-level nested loop, suppose
we extend our array addition example from linear arrays to 2-dimensional arrays. Mathe-
matically, this is equivalent to adding two matrices, as shown in Equation (1).

 (1)

Now, in order to add the arrays, we must iterate through the rows, and for each row,
iterate through the columns, adding together the two values for each array element. Coding
the matrix addition operation requires an outer and an inner loop to cycle through the
rows and columns, respectively, as shown by the code example in Figure 15.26. According
to (1), there are 3 rows and 4 columns, and this determines the limits of the nested loops
(note that indexing starts as zero, as per the usual convention).

Extending this idea, it would be possible to work with three dimensional arrays, or even
higher dimensions, by increasing the levels of nesting in the loop structure.

Figure 15.25: Merged addition and multiplication loops

void add_mult (short c[12], short m[12], short a[12], short b[12])
{
 short j;

 add_mult_loop: for (j=0;j<12;j++) {
 c[j] = a[j] + b[j];
 m[j] = a[j] * b[j];

 }
}

enter

adds &

exit

1

48

1

clock cycles

FSM
behaviour

mult

f00 f01 f02 f03

f10 f11 f12 f13

f20 f21 f22 f23

d00 d01 d02 d03

d10 d11 d12 d13

d20 d21 d22 d23

e00 e01 e02 e03

e10 e11 e12 e13

e20 e21 e22 e23

+=
323

CHAPTER 15: Vivado HLS: A Closer Look

Optimisation: Flattening Loops

In the case of nested loops, we have the option to perform ‘flattening’. This means that
the loop hierarchy is effectively removed during high-level synthesis, while preserving the
algorithm, i.e. all of the operations performed by the loop(s). The advantage of flattening is
similar to merging: the additional clock cycles associated with transitioning into or out of a
loop are avoided, meaning that the overall duration of algorithm execution reduces, thus
improving the achievable throughput.

In order to explain flattening in further detail, it is necessary to clarify the terms loop and
loop body. By loop, we refer to an entire code structure of a set of statements repeated a
defined number of times. The statements inside the loop, i.e. the statements that are
repeated, are the loop body. For instance, column_loop is a loop, and the statements
contained within column_loop correspond to the loop body.

When loops are nested, and again taking the example of a 2-level nested structure, the
outer loop body contains another loop, i.e. the inner loop. The outer loop body (including
the inner loop) is executed a certain number of times; for instance, row_loop has 3 repeti-
tions in the example of Figure 15.26, and hence there are 3 executions of the inner loop,
column_loop. Each execution of the inner loop involves repeating the inner loop body a
specified number of times, as well: in our example, a statement to calculate the matrix
element f[j][k] is executed 4 times, where j is the row index and k is the column index.

Figure 15.26: Example code for nested loops adding the elements of two dimensional arrays

void add_matrix (short f[3][4], short c[3][4], short d[3][4])
{
 short j,k; // loop variable

 row_loop: for (j=0;j<3;j++) { // iterate through rows
column_loop : for (k=0;k<4;k++) { // iterate through columns
 f[j][k] = c[j][k] + d[j][k]; // addition operation

 }
 }
}

324

CHAPTER 15: Vivado HLS: A Closer Look
The overhead of loop transitioning means that two additional clock cycles are required
each time the inner loop is executed, i.e. one to enter the inner loop, and one to exit from it.

To clarify this point, a diagram depicting the control flow for our matrix addition
example, and associated clock cycles, is provided in Figure 15.27. This represents the
original loop structure. The process of flattening ‘unrolls’ the inner loop, and as a conse-
quence, reduces the number of clock cycles associated with transitioning into and out of
loops; specifically, the ‘enter_inner’ and ‘exit_inner’ states in Figure 15.27 are removed.
These would have been repeated 3 times, hence 6 clock cycles are saved in total in this case.

In our simple 3 x 4 matrix addition example, the saving equates to 6 clock cycles, but in
other examples this could be considerably higher (in particular where the outer loop
iterates many times, or there are several layers of nesting), and thus there is a clear
motivation to flatten loops. Similar to merging of loops, flattening can be achieved by a
directive and does not involve explicit unrolling of the loop by manually changing the code.
However, depending on its initial form, some manual restructuring may also be required in
order to achieve a loop structure optimal for flattening [18].

row_loop : for (j=0;j<3;j++) {

column_loop : for (k=0;k<4;k++) {

}

}

L

cycles

1

1

1

1

enter

inner

exit

inner

repeat outer loop body x 3

 (= repeat inner loop x 3)

\\ inner loop body
...
... statements ...

repeat inner

 loop body x 4

enter outer

exit outer

Figure 15.27: Control flow through the matrix addition, without flattening (clock cycles in circles)
325

CHAPTER 15: Vivado HLS: A Closer Look
Pipelining Loops

The direct interpretation of a loop written in C code is that executions of the loop occur
consecutively, i.e. each loop iteration cannot begin until the previous one has completed. In
hardware terms, this translates to a single set of hardware (as inferred from the loop body)
that is capable of executing the operations of only one loop iteration at any particular
instant, and which is shared over time according to the number of loop iterations.

This relates to our previous discussion on pipelining, i.e. as covered in Section 15.5.3.
We observed that throughput is limited when a set of operations are grouped together into
a processing stage. In the case of loops, the loop body (i.e. the set of repeated operations)
forms such a stage, and without pipelining this would result in all stages operating in a
sequential manner, and within them, all operations executing in a sequential manner. In
effect, all operations from all iterations of the loop body would occur one after the other,
similar to Figure 15.17 on page 314. The total number of clock cycles to complete the
execution of a loop, , would therefore be:

(2)

where is the number of loop iterations, is the number of clock cycles to execute all

operations in the loop body, and represents the overhead of transitioning into and
out of the loop.

 The insertion of pipelining into the loop means that registers separate the implemented
operators within the loop body. Given that the loop body is repeated several times, this
carries the implication that operations within loop iteration j+1 can commence before
those of the loop iteration j have completed. In fact, at any instant, operations corre-
sponding to several different iterations of the loop may be active.

As a consequence of pipelining the loop, the hardware required to implement the loop
body is more fully utilised, and loop performance is improved in terms of both throughput
and latency. The effect of adding a pipelining directive can therefore be considerable,
especially where there are multiple operations within the loop body, and many iterations of
the loop are performed.

When working with nested loops, it is useful to consider at which level of hierarchy
pipelining should be applied. Pipelining at a certain level of hierarchy will cause all levels
below (i.e. all nested loops) to be unrolled, which may produce a more costly implemen-
tation than intended. Therefore, a good balance between performance and resource utili-

Nloop

Nloop J Nbody×() Ncontrol+=

J Nbody

Ncontrol
326

CHAPTER 15: Vivado HLS: A Closer Look
sation may be achieved by pipelining only at the level of the innermost loop (for instance,
column_loop in Figure 15.27).

15.5.6. Arrays

In Vivado HLS, array types normally represent storage, and hence arrays are usually
synthesised into memories.

The memories inferred during the HLS process are mapped to physical resources on the
PL — whether Block RAM, or distributed RAM constructed from logic slices — and
therefore it is important to be aware of the size and shape of synthesised memories, and
how these map to the resources available on the device. In fact, often it is desirable to exert
influence over the synthesised memory to enhance its mapping to physical memory
resources, and designers may achieve this through the use of directives.

A number of array optimisations are available, and these can be specified via directive as
detailed below. Note that these are similar to the interface directives of the same name, but
in this case they relate to elements within the circuit.

• Resource — The designer can choose to map an array in the C-based HLS source
code to a specific memory resource.

• Array Map — Allows several small arrays to be combined into a single, larger array.
This can bring the advantage of reducing the total amount of memory resources
required (e.g. it may be possible to use a single Block RAM to implement all
memories combined, rather than one Block RAM each for four discrete memories).
Mapping can be either horizontal (arrays are concatenated to form an array with
more elements), or vertical (array elements are combined, resulting in an array with
longer words).

• Array Partition — This directive could be considered the opposite to the Array Map
directive, in the sense that it allows the designer to determine the subdivision of a
large array into a set of smaller ones. The motivation for partitioning is generally to
improve the aggregate rate at which memory transactions can take place, e.g. a large
dual port RAM can accommodate two transactions per clock cycle, whereas four
smaller dual port RAMs can accommodate a total of eight transactions per clock
cycle (two each). At the extreme, array partitioning can prompt the subdivision of an
array into individual register elements.
327

CHAPTER 15: Vivado HLS: A Closer Look
• Array Reshape — This directive allows an array with many elements, each with
short words, to be reshaped into an array with fewer, longer words. The motivation
for applying this directive is to reduce the number of required memory accesses.

• Stream — Applying the stream directive prompts an array to be synthesised into a
FIFO, rather than a RAM.

Where combination of memories is based on arrays with differing dimensions, this is
accommodated by the tool as described in [18].

As is evident from the selection of array directives reviewed here, the designer can
mould arrays in various different ways, according to his or her needs. In some circum-
stances, it is desirable to combine arrays in order to optimise resource usage. On other
occasions, it may be more important to optimise memory bandwidth, and this can be
accomplished by separating arrays into smaller memories, such that there are more
memory access ports available.

Array manipulation can therefore be considered a flexible and powerful technique
available to the HLS designer, whether the principal implementation aim is to minimum
resource utilisation, or maximise performance.

15.6. Design Evaluation and Optimisation

As mentioned extensively throughout this chapter, designs developed in Vivado HLS are
based on a structure wherein the source code is constant, and a series of variations
(‘solutions’) are generated by supplying different constraints and directives. The designer
can explore possibilities and iterate towards the optimum solution by tuning these param-
eters.

In this section, we consolidate some of these points, and consider in particular the steps
a designer might take to refine a design via the mechanisms provided in Vivado HLS.

15.6.1. Design Constraints

Certain constraints can be applied within the design process to limit some aspect of the
produced solution. The most commonly applied type of constraint is a timing constraint,
which usually places an upper limit on the clock period (although other aspects of timing
can also be defined). Another possibility is to constrain the latency of a design, meaning
that the number of clock cycles between applying an input, and observing the corre-
sponding output, is given an upper or lower limit. Aside from aspects of timing, the
designer can also constrain the resources used to implement the desired functionality.
328

CHAPTER 15: Vivado HLS: A Closer Look
The HLS process may produce different results depending on the applied constraints.
For example, if a maximum latency is prescribed, then the generated design may use more
resources to implement the required algorithm; on the other hand, if resource utilisation is
limited, then the resulting implementation is likely to employ time sharing, and thus to
exhibit higher latency.

15.6.2. Synthesis Directives

We have seen through the discussion in this chapter that there are several types of
directive available, which permit the designer to influence certain aspects of the synthe-
sised hardware. For instance, we noted that interface constraints can be applied to prompt a
particular type of protocol to be used, and that pipelining directives influence concurrency,
latency and throughput.

Directives can be applied as TCL commands and consolidated in dedicated file, or
inserted inline in the C/C++/SystemC source code, as pragmas. These methods may each
be preferred for different reasons. To provide a common example, often the interface of a
design is defined first, and fixed; therefore applying interface directives as pragmas means
that these choices are consistent across all solutions. On the other hand, while actively
exploring the algorithm synthesis design space, it is appropriate to keep the directives
separate from the source code, as this makes it easier to manage the application of direc-
tives, and create ‘fresh’ solutions where desired.

15.6.3. Statistics and Reports

With each solution produced by Vivado HLS, an accompanying report will be generated
to encapsulate its various statistics, including estimates of timing (clock) performance,
latency, and resource utilisation. (Note that these are estimates, bearing in mind that full
detail is not available until the more time consuming stages of RTL synthesis and imple-
mentation are undertaken.) Full details of the synthesised interface are also provided.
Where applicable, the report will also contain details of individual loops within the design,
in terms of their trip count (number of iterations), latency and initiation interval.

A further option is to generate a report consolidating the statistics from a set of
solutions. Vivado HLS prompts the user to make a selection from all solutions in the
project, and a report is prepared accordingly. This summary is a helpful method of
comparing statistics across a set of solutions, and thus identifying the solution providing
the best fit with requirements, or the trend associated with applying a certain directive.
329

CHAPTER 15: Vivado HLS: A Closer Look
15.6.4. Design Iterations and Optimisation

It should be apparent from previous discussion that the designer can exert considerable
control over the results of HLS via the use of directives and constraints. The reports
produced for individual solutions will help to identify issues such as memory bottlenecks,
excessive loop latency, and over-utilisation of resources. He or she can then refine the
existing directives, or augment them to better direct the synthesis process towards the
optimum solution.

15.7. Exporting from Vivado HLS

Designs can be exported from Vivado HLS to form a selection of different outputs.
These are provided to permit easy integration of Vivado HLS IP with other development
tools in the Vivado and ISE design suites.

At the stage of exporting, there is an opportunity to ‘Evaluate’ the design, meaning that
the stages of RTL synthesis and implementation are performed, and this produces a further
report confirming actual values for resource utilisation and timing performance. This can
be undertaken using VHDL or Verilog as the RTL language.

15.7.1. Vivado IP Catalog (IP-XACT Format)

The primary option is to export from HLS to the IP-XACT format, which allows the
module to be integrated into a Vivado IP Integrator design. An option is presented allowing
the designer to label the IP package, and to insert author and version information. The
result is a zip folder residing in the ‘impl\ip’ subfolder of the relevant solution, and this
represents the IP Catalog package.

Once in IP-XACT format, the IP produced from Vivado HLS can be easily shared and
distributed.

15.7.2. System Generator for DSP

A further option is to export the HLS design as an IP block for use in System Generator.
When doing so, the user is prompted to specify either ISE or Vivado, depending on their
tool of choice for performing logic synthesis and implementation. That is to say, if the final
System Generator system (including the IP originating from HLS) is intended to be synthe-
sised using ISE, then ISE should be chosen when exporting from Vivado HLS.
330

CHAPTER 15: Vivado HLS: A Closer Look
15.7.3. Pcore for XPS

Users working with the XPS tool for embedded systems design have the option to export
Vivado HLS IP as a pcore, which can be easily integrated into an XPS-based system.

15.8. Chapter Review

This chapter has provided a detailed look at the Vivado HLS development tool, which
provides the facility to rapidly develop hardware designs from C-based software descrip-
tions.

Although there is insufficient scope in a single chapter to review all aspects of the tool,
we have covered the Vivado HLS environment, the use of data types (including the facilities
for working with arbitrary precision formats), and various aspects of interface and
algorithm synthesis. Several conceptual and code-based examples have been presented to
illustrate the points made.

A running theme throughout has been the ability of the designer to influence the
synthesis from input C code, via the use of directives and constraints, and thus to produce
different ‘solutions’. As part of this discussion, key performance and implementation
metrics were reviewed, and examples were presented to illustrate the designer’s ability to
control these using directives.

Finally, it was noted that designs produced in Vivado HLS can be readily exported for
integration into larger system projects, whether in IP Integrator, XPS, or System Generator.

15.9. References

Note: All URLs last accessed June 2014.

[1] D. C. Black, J. Donovan, B. Bunton and A. Keist, SystemC: From the Ground Up, 2nd Edition, Springer,
2009.

[2] M. Burton, J. Aldis, R. Günzel and W. Klingauf, “Transaction Level Modelling: A reflection on what TLM is
and how TLMs may be classified”, Forum on Design Languages, 2007, pp. 92-97.

[3] D. Gajski and R. Kuhn, “Guest Editors’ Introduction: New VLSI Tools”, Computer, vol. 16, no.12, pp.11 - 14,
December 1983.

[4] D. Gadski, T. Austin and S. Svoboda, “What Input-Language is the Best Choice for High Level Synthesis
(HLS)?”, panel session, Proceedings of the 47th ACM/IEEE Design Automation Conference (DAC), pp. 857-
858, June 2010.
331

CHAPTER 15: Vivado HLS: A Closer Look
[5] GNU, The GNU C Reference Manual.
Available: http://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html

[6] D. Große and R. Drechsler, Quality-Driven SystemC Design, Springer, 2010.

[7] IEEE Computer Society, “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE Std
1666-2011, January 2012.

[8] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, 1978.

[9] S. G. Kochan, Programming in C: A Complete Introduction to the C Programming Language, 3rd Edition,
Sams Publishing, 2005.

[10]M. C. McFarland, A. C. Parker, and R. Camposano, “The High-Level Synthesis of Digital Systems”,
Proceedings of the IEEE, vol. 78, no.2, pp 301 - 318, Feb 1990.

[11]G. Martin and G. Smith, “High Level Synthesis: Past, Present and Future”, IEEE Design and Test of
Computers, Vol. 26, Issue 4, July/August 2009, pp. 18 - 24.

[12]A. Mathur, E. Clarke, M Fujita, and R. Urard, “Functional Equivalence Verification Tools in High-Level
Synthesis Flows”, IEEE Design & Test of Computers, July/August 2009, pp. 88 - 95.

[13]M. Meredith and S. Svoboda, “The Next IC Design Methodology Transition is Long Overdue”, Open
SystemC Initiative, February 2010.
Available: http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/
ic_design_transition_feb2010.pdf

[14]D. M. Ritchie, “The Development of the C Language”, Proceedings of the 2nd History of Programming
Languages Conference, Cambridge, Massachusetts, April 1993.

[15]Xilinx, Inc., “UG634 - AccelDSP Synthesis Tool User Guide”, v11.4, December 2009.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/acceldsp_user.pdf

[16]Xilinx, Inc., “UG835 - Vivado Design Suite Tcl Command Reference Guide”, v2014.1, April 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug835-vivado-tcl-
commands.pdf

[17]Xilinx, Inc., “UG871 - Vivado Design Suite Tutorial: High Level Synthesis”, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-
level-synthesis-tutorial.pdf

[18]Xilinx, Inc, “UG902 - Vivado Design Suite User Guide: High-Level Synthesis”, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-
level-synthesis.pdf

[19]Xilinx, Inc., “UG998 - Introduction to FPGA Design with Vivado High-Level Synthesis”, v1.0, July, 2013.
Available: http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-
hls.pdf
332

http://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug871-vivado-high-level-synthesis-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/acceldsp_user.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/ic_design_transition_feb2010.pdf
http://www.accellera.org/resources/articles/icdesigntrans/community/articles/icdesigntrans/ic_design_transition_feb2010.pdf

16

Designing With Vivado

High Level Synthesis

his practical chapter and its corresponding tutorial will provide an introduction to
High Level Synthesis for Zynq using the Vivado HLS tool.

16.1. Prerequisites

Before beginning this exercise it is recommended you have read up to and including
Chapter 15, entitled Vivado HLS: A Closer Look, as this chapter provides a detailed account
of the various techniques we will be exploring in the following tutorial.

16.2. Aims and Outcomes

The aim of this practical exercise is to provide a taster of the use of Vivado HLS in the
design and implementation of systems for Zynq.

After completion of this tutorial you will be able to:

• Create Vivado HLS projects using both the graphical user interface and Tcl scripting.

• Synthesise interfaces through use of various HLS directives.

T

333

CHAPTER 16: Designing With Vivado High Level Synthesis
• Optimise a Vivado HLS design to meet various constraints, exploring multiple HLS
solutions with differing directives.

The main aim of this tutorial is to give an appreciation of the potential of HLS in the
development of Zynq systems. As such, we will not be catering to an in depth study of HLS
and those seeking to learn more can continue to do so through Xilinx UG871 - Vivado
Design Suite Tutorial: High-Level Synthesis.

16.3. Overview of Exercise 3A

The first practical exercise introduces the Vivado HLS tool and the generation of HLS
projects using it. We will demonstrate the creation of projects utilising the provided GUI,
and also using Tcl scripting to facilitate rapid creation of projects whilst minimising repet-
itive tasks.

Exercise 2A is available on the website: www.zynqbook.com

16.4. Overview of Exercise 3B

This exercise will utilise the project created previously to explore the Vivado HLS
toolflow with regards to design optimisation. In particular, this exercise concerns a matrix
multiplier system which will be synthesised, analysed, and optimised through use of
various directives. Completion of this exercise will allow you to

1. Create, analyse and compare multiple solutions for an HLS design.

2. Implement directives to meet critical performance requirements in a design.

3. Negotiate a trade-off between required performance and hardware utilisation.

Exercise 2B is available on the website: www.zynqbook.com

16.5. Overview of Exercise 3C

This final exercise will return to the matrix multiplier system and discuss how interfaces
are synthesised in Vivado HLS from the source code, through use of directives and block
level protocols.

Exercise 2C is available on the website: www.zynqbook.com
334

CHAPTER 16: Designing With Vivado High Level Synthesis
16.6. Possible Extensions

For a comprehensive introduction to Vivado HLS it is recommended you view Xilinx
UG871 as mentioned in Section 16.2.

16.7. What Next?

The next practical chapter will cover the creation of IP for use in a Zynq system, using a
variety of tools including HDL, Xilinx System Generator, MathWorks HDL Coder and
Vivado HLS.

The concept of IP integration will be covered in the remainder of this section of the
book.
335

CHAPTER 16: Designing With Vivado High Level Synthesis
336

17

IP Creation

his practical chapter focuses on the creation of custom IP modules for implemen-
tation on the Zynq-7000 platform. The IP creation methods used in the practical exercises
presented in this chapter will coincide with those detailed in Chapter 13 - IP Block Design.

17.1. Aims and Outcomes

The overall aim of these practical exercises is to introduce the IP creation flow of the
various languages and tools available for the creation of IP. All of the individual IP modules
created during this practical tutorial will be brought together to form part of a DSP based
system which will be implemented in a future practical in Chapter 20 — Adventures with
IP Integrator.

After completion of this tutorial you will be able to:

• Create IP blocks in the following languages/tools:

- HDL

- MathWorks HDL Coder

- Xilinx Vivado HLS

• Be familiar with the Vivado IP Packager flow

T

337

CHAPTER 17: IP Creation
17.2. Overview of Exercise 4A

In this exercise a simple IP module will be created in HDL (VHDL) which will allow the
LEDS on the ZedBoard to be controlled by software running on the PS. This will utilise the
Create and Package IP Wizard in Vivado to create an AXI-Lite interface wrapper which will
allow the custom IP to be connected as an AXI-Lite slave to the Zynq processor. The IP
packaging process will be introduced, detailing the automatic AXI-Lite interconnect
detection and the inference of memory mapped registers. The external LED pins will be
mapped to the LED interface in the IP Integrator design by creating a new XDC file.

The steps involved in this Exercise are:

1. Create a new project in Vivado IDE.

2. Invoke the Create and Package IP Wizard and create a new AXI-Lite slave IP.

3. Add custom functionality to the generated IP template.

4. Package the newly customised IP with IP Packager.

5. Add the packaged IP to the IP Catalog.

6. Create a block diagram and connect the LED IP to the Zynq processor via the AXI
interconnect.

7. Generate and export the hardware design to the SDK.

8. Create a simple software application to test that the custom IP functions correctly.

Exercise 4A is available on the website: www.zynqbook.com

17.3. Overview of Exercise 4B

An adaptive Least Mean Squares (LMS) filter will be created and tested in MathWorks
Simulink. HDL code for the LMS subsystem will then be generated through the use of HDL
Coder, and packaged as an IP core for implementation in Vivado. This will provide a good
introduction to the HDL Coder flow, which is capable of creating IP Integrator compatible
IP by automatically generate an AXI-Lite interface that adheres to the correct signal
naming conventions. The generated IP will then be imported into a Vivado IDE project
and packaged with IP Packager.

An adaptive filter is a form of self-learning filter, capable of adapting to a channel, or a
particular set of signals, rather than being designed with a single filter characteristic in
338

CHAPTER 17: IP Creation
mind. The LMS algorithm is one such approach to adaptive filter design, using an iterative
weight update algorithm to update to coefficients of an FIR filter to best construct a desired
signal from one corrupted with noise. A block diagram of an LMS filter is provided in
Figure 17.1.

The steps involved in this Exercise are:

1. Invoke Simulink and create a LMS system.

2. Explore the fixed point signal types required for HDL generation.

3. Test the LMS to ensure that it is working correctly.

4. Invoke the HDL Coder workflow and set the required parameters to generate a
Xilinx compliant IP core.

5. Import the HDL Coder generated IP into the Vivado IP Catalog.

Exercise 4B is available on the website: www.zynqbook.com

17.4. Overview of Exercise 4C

In this exercise, Vivado HLS will be used to create an NCO from an existing C-code
implementation. This will build upon the practical examples that were covered in Chapter
16 — Designing With Vivado High Level Synthesis, which introduced the features of
Vivado HLS.

Unknown

Channel
LMS

y(k)

Figure 17.1: Block diagram of LMS filtering of noise created by an unknown channel
339

CHAPTER 17: IP Creation
The NCO implementation will be run through Vivado HLS to generate HDL code which
can be packaged as an IP core for inclusion in Vivado IP Integrator projects.

A common method of implementing NCOs is to use a sine Lookup Table (LUT). A sine
waveform can be generated by stepping through the entries of the LUT. When the end of
the table is reached we simply wrap around to the start of the table, thereby creating a
periodic waveform. This scheme is depicted in Figure 17.2. The ramp function is generated
by a fixed point accumulator. The input to the accumulator is added to its latest value on
each step. The magnitude of this input value therefore controls the frequency of the oscil-
lator.

The steps involved in this Exercise are:

1. Invoke Vivado HLS and import the existing NCO C-code algorithm implementa-
tion.

2. Simulate the NCO C-code algorithm using the provided C-code testbench file.

3. Export the NCO algorithm as a HDL IP core.

Exercise 4C is available on the website: www.zynqbook.com

17.5. Possible Extensions

Having completed Exercise 4C, there are some possible variations you can introduce to
personalise the developed system. For example, you could:

Accumulator

Frequency

control

(16-bits)

12-bits

(integer

part)

0 20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine LUT

address
0 N-1

v
a
lu
e

fixed-point

output

waveform

Numerically Controlled Oscillator

Figure 17.2: Architecture of a Numerically Controller Oscillator (NCO)
340

CHAPTER 17: IP Creation
• Build upon the IP core created in Exercise 4A, and use HDL to create an IP core
which reads the values of the DIP switches and/or push buttons on the ZedBoard.

• Create further IP blocks for the system, using the method of your choice, which
introduce audio effects such as echo or reverb.

17.6. What Next?

This set of practical exercises rounds off the topic of IP creation.

Next, we move onto the topic of IP reuse and integration, which focuses on the IP-
centric system design approach, and the various IP libraries that are available. The AXI
interconnect will be looked at in greater detail, and further practical exercises will follow,
with the main focus being on using IP Integrator for overall Zynq embedded system
design.
341

CHAPTER 17: IP Creation
342

18

IP Reuse and Integration

he Vivado Design Suite provides a design flow that revolves around the IP blocks
and the ability to include them in your design from a number of different design sources
[6].

In this chapter we will explore the IP-centric system design approach that is presented by
the Vivado Design Suite, taking a closer look at some of the IP libraries that are available.
The IP integration tools, such as IP Packager and IP Integrator will also be introduced.

18.1. Overview

An overview of the IP-centric design flow that is enabled by Vivado Design Suite is
provided in Figure 18.1, and revolves around a central IP repository called the IP Catalog,
which amalgamates IP from a variety of sources [6]:

• Vivado Design Suite IP

• Modules from external Xilinx design tools such as Vivado HLS and System
Generator.

• Third-party IP modules

The various forms of IP can be instantiated and configured, as well as interactively
connected, via IP Integrator which provides a block based environment in which to create
entire embedded system designs [5].

T

343

CHAPTER 18: IP Reuse and Integration
The Vivado Design Suite IP-centric design flow revolves around the philosophy of IP
design, reuse and integration, allowing you to create your own IP modules (see Chapter
13), but also to package your IP designs for repeat use and easily integrate third-party IP. It
is the process of IP reuse and integration which we will be exploring in this chapter.

18.2. System Design — A System-Level Approach

The Vivado Design Suite provides an environment that easily allows you to configure,
implement, verify and integrate IP. The form of the IP can be anything from logic designs,
soft processor cores, C-based algorithm designs and DSP modules. All IP can be
configured and verified as an individual module or as part of a larger, system-level design.
Custom IP is packaged for use in the Vivado Design Suite according to the IP-XACT

Testbench
Source Files

(RTL, C etc)

Simulation

Models

Documentation

Examples

IP Packager

Xilinx IP

3rd Party IP

Custom IP

IP Catalog

User Design

Figure 18.1: Vivado IP-centric flow
344

CHAPTER 18: IP Reuse and Integration
standard before being available in the IP Catalog. A large selection of Xilinx IP supports the
AXI4 interconnect standard to enable easy system-level integration. The AXI interconnect
is covered in Chapter 19.

An overview of the Vivado Design Suite system-level design flow is provided in Figure
18.2.

Xilinx IP

3rd Party IP

Custom IP

IP Catalog

Sources:

RTL, Netlist

& constraints

Custom IP

Design Analysis

Constraints

Simulation

Debugging

Cross Probing

ECO

IP Packaging

RTL

System-Level

Integration

High-Level

Synthesis

DSP Design

(System Generator)

IP Integration

(Embedded Logic,

DSP, etc...)

Synthesis

Implementation

Programming and

Debug

Figure 18.2: Vivado Design Suite system-level design flow
345

CHAPTER 18: IP Reuse and Integration
18.3. IP-XACT

The IP-XACT standard is an eXtensible Markup Language (XML) schema for
documenting IP using metadata, which is both human readable and machine accessible
[2], along with an Application Programming Interface (API) which allows software tools
access to the stored meta-data [1]. The tools that are compatible with the IP-XACT
standard are able to interpret, configure, implement and change IP blocks that are
compliant with the IP meta-data description [1]. This provides all users of the standardised
IP - whether it be the IP providers, EDA vendors or systems designers — with a consistent
IP interface to facilitate IP reuse.

The standard was developed by the SPIRIT Consortium — a group of IP provider,
electronic design, EDA and semiconductor companies — and is now managed by Accellera
Systems Initiative. IP-XACT also provides software views, file lists, protocol standardi-
sation and the ability to further extend the schema for additional design and flow infor-
mation [1].

IP-XACT in no way describes the hardware functionality of IP, but instead describes the
interface. It is therefore not a replacement for RTL languages such as VHDL or Verilog,
embedded software or documentation, but is instead complementary: an IP-XACT
component provides key information about the IP.

The standardisation of IP-XACT addresses a number of issues with IP reuse and
provides ease of system integration and integration, as well as the ability to automate
connections between IP. All of this amounts to the ability to drastically reduce time-to-
market, which is an ever increasing concern. IP-XACT has been developed to provide a
standardised data exchange format which is robust enough to allow design flow
automation and verification as well as the flexibility to be used by multiple IP designers,
vendors, EDA vendors and end users.

18.4. IP Libraries

A large number of IP libraries exist, varying from open source projects, commercial IP
vendors as well as in-house IP libraries solely for use by an individual or company. In this
section we will further explore the various sources of IP, covering any limitations which
exist and provide some specific examples.
346

CHAPTER 18: IP Reuse and Integration
18.4.1. Vivado IP Catalog

The Vivado IP Catalog presents a centralised repository for all of your IP modules,
including Xilinx, third-party and custom IP which can be shared between multiple end-
users to enable effective design reuse. The key features of the Vivado IP Catalog include [6]:

• All available IP is based on the IP-XACT standard, providing an open and consistent
IP interface.

• A consistent interface by which to access all Xilinx IP from a common, easy access
repository.

• Support for multiple repository locations, including network storage locations,
allowing a consistent IP deployment environment for external or custom developed
IP.

• Integrated IP design examples which provide the ability to evaluate IP as an instan-
tiated source in a Vivado project.

• Global RTL synthesis of IP with the ability simulate using behavioural simulation
models or synthesisable RTL.

• The ability to output simulation models, HDL example designs and instantiation
templates on-demand.

• Instantly accessible options to customise and generate IP using the Vivado IDE or Tcl
automatic scripting.

18.4.2. Third-Party

In recent years there has been a shift to companies designing and licensing IP cores,
rather than manufacturing and selling physical silicon products. A good example of such a
company is ARM Holdings who develop and license the ARM processors which form part
of the Zynq platform. ARM Holdings do not manufacture any physical processor chips,
and instead licenses its designs as IP modules.

Third-party IP vendors can range from an individual who licenses a single design all the
way up to a large, multi-billion dollar corporations with thousands of individual IP designs
available. Some companies licence IP cores that are optimised for Xilinx devices, with
many such companies being members of the Xilinx Alliance Program — a worldwide
ecosystem of collaborating companies which work with Xilinx to further the development
of All Programmable technologies [7]. Examples of Xilinx-specific IP that is available from
Alliance members include memory controllers, image and video codecs, motor controllers
347

CHAPTER 18: IP Reuse and Integration
and graphics accelerators. As most IP available from Alliance members is optimised for use
on Xilinx devices, the use of their IP can help to maximise performance while minimising
resource utilisation. Furthermore, most of the available IP provides support for the Xilinx
design flow, allowing it to be easily integrated in your design.

There is also a large range of IP vendors who develop and license generic IP modules
which are designed to be non-vendor-specific. Such generic IP cores are generally
packaged as synthesisable RTL, although in some cases a gate-level netlist is provided.
When provided as RTL, the end-user has the ability to modify the IP design to a certain
degree, although vendors offer little support for modified designs. A gate-level netlist can
be compared to an assembly-code listing in computer programming, and gives the IP
vendor a certain degree of security against the reverse engineering of their designs.

More recently, the open source community has begun developing IP cores and providing
them free-of-charge. Generally, open source IP cores are distributed under one of two
licenses: the GNU Lesser General Public License (LGPL) or the modified-BSD license. In
terms of delivery, open source IP is usually provided as generic synthesisable RTL; it is rare
to find an open source IP core that is truly vendor-specific. The most notable open source
IP provider is OpenCores which is the world’s largest community for the development of
open source IP cores [3].

There are a number of advantages and disadvantages to using both vendor-specific and
non-vendor-specific IP cores. These are summarised in Table 18.1.

Table 18.1: Advantages and disadvantages of IP types

Vendor-Specific Non-Vendor-Specific

Advantages Guaranteed to work straight
out of the box.

Can be found for free (open
source).

Optimised for a specific
device, in terms of power,
performance and resource
efficiency.

One IP core can be used
across multiple devices.

Disadvantages Not portable (will only work
with a small amount of
devices).

Will require modifications to
comply with tool chain nam-
ing conventions.

Can be expensive. Not optimised for a specific
device.
348

CHAPTER 18: IP Reuse and Integration
18.4.3. Custom IP

Custom IP which is created by any of the methods described in Chapter 13 can be easily
integrated into the Vivado IP Catalog to add to the comprehensive collection of Xilinx IP.
Depending on the design method of choice, the IP may be able to be imported to the IP
Catalog directly. IP created using System Generator or Vivado HLS, for example, are
packaged in a format that can be imported into the IP Catalog. For other design methods
such as HDL design and HDL coder, the custom IP will have to be processed by IP
Packager in order to be incorporated in the IP Catalog.

For more information on IP Packager, please refer to Section 18.5.2.

18.5. IP Integration

The Vivado Design Suite provides you with all the tools necessary to integrate IP, both
Xilinx and third-party, into your Zynq system designs. Two of those features, IP Integrator
and IP Packager will be reviewed in the following section.

18.5.1. IP Integrator

Vivado IP Integrator provides a graphical and Tcl based IP and system-centric design
development environment that offers a “correct-by-construction”, automated development
flow [4]. The functionality, built in to the Vivado Design Suite, provides a platform and
device aware environment which can auto-connect fundamental IP interfaces, as well as
supporting one-click IP subsystem generation, real-time DRCs and powerful debugging
capabilities [4].

IP integrator allows designers to work at interface level to accelerate the creation of
complex systems in Vivado, ensuring that designs and IP are correctly configured. The
automatic generation of device drivers and address generation, coupled with the automatic
interfacing of separate IP modules, streamlines the assembly of a design, making the whole
process quicker and easier than ever [4].

18.5.2. IP Packager

Vivado IP Packager enables third-party IP developers to quickly prepare IP for
integration in the Vivado IP Catalog, allowing them to include any custom IP into a Vivado
Design Suite design. The IP Packager flow ensures that the end IP user always has a
consistent experience when using IP from the Vivado IP Catalog, whether it be Xilinx,
third-party or custom developed IP.
349

CHAPTER 18: IP Reuse and Integration
Using the IP packaging and usage flow in Figure 18.3 as an example, existing IP is
packaged using IP Packager which packages the IP source and data files into a ZIP file. The
ZIP file can then be integrated into the Vivado Design Suite IP Catalog. Once the IP is
selected in a Vivado project, the IP is treated like any other IP module from the IP Catalog
allowing the user to customise the IP through parameter selections which are then used
generate an instance of the IP.

The primary output of IP Packager is an IP-XACT component file that can include
default GUI files incorporated in the ZIP file, along with regeneration and report files [6].

One of the key benefits of using IP Packager is that custom IP can be packaged using the
IP-XACT standard, without the need to fully understand the details of the IP-XACT
coding schema. Some background information on the IP-XACT standard has been
provided in this chapter, but it should be noted that no prior knowledge of IP-XACT is
required when using IP Packager. The purpose of IP Packager is to take care of the under-
lying IP-XACT XML coding, and to allow the user to focus solely on creating the IP
functionality.

M-fileM-file
IP Source Files

(HDL etc..)

IP Package

(ZIP file)

IP

Packaging

M-fileM-file
HDL &

output

Repository

Management &

Catalog

Customise &

Generate

IP Development Flow IP Use Flow

Figure 18.3: IP packaging and use flow
350

CHAPTER 18: IP Reuse and Integration
18.6. Chapter Review

This chapter has introduced the concept of IP reuse and integration, providing an
overview of the Vivado IP-centric design flow and the system-level approach to design. A
discussion of the various ways in which IP can be obtained, including vendor-specific,
generic and open source IP was provided, along with a discussion of the various advantages
and disadvantages of each.

The tools available in the Vivado Design Suite for the reuse and integration of IP have
also been introduced, with specific focus on the IP-centric design flow. IP Integrator and IP
Packager features have been discussed as well as an overview of the IP-XACT IP meta-data
documentation standard which is widely adopted throughout the IP design, semicon-
ductor and EDA system design industry.

18.7. References

NOTE: All URLs last accessed June 2014.

[1] “IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool
Flows”, IEEE Standard 1685-2009, February 2010.

[2] M.v. Hintum and P. Williams, “The Value of High Quality IP-XACT XML”.
Available: http://www.design-reuse.com/articles/19895/ip-xact-xml.html

[3] OpenCores, webpage. Available: http://opencores.org/

[4] Xilinx, Inc, “Vivado Integration - Vivado IP Integrator”, webpage.
Available: http://www.xilinx.com/products/design-tools/vivado/integration/index.htm

[5] Xilinx, Inc, “Vivado Design Suite User Guide: Design Flows Overview”, UG892, v2014.2, April 2014.
Available:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug892-vivado-design-flows-
overview.pdf

[6] Xilinx, Inc, “Vivado Design Suite User Guide: Designing with IP”, UG896, v2014.1, May 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug896-vivado-ip.pdf

[7] Xilinx, Inc, “Xilinx Alliance Program”, webpage. Available: http://www.xilinx.com/alliance/
351

CHAPTER 18: IP Reuse and Integration
352

19

AXI Interfacing

his chapter will introduce the AMBA AXI Protocol used with IP in a Zynq system.
The various interfaces provided by the AXI4 protocol will be discussed with reference to
how they vary in operation and which applications they are best suited for. Finally, imple-
menting IP with AXI support in Xilinx Vivado IP Integrator will be presented.

19.1. Development of AXI

AXI is a protocol belonging to the ARM AMBA family of microcontroller buses. The
AMBA protocol is an open standard on-chip interconnect specification, allowing the
connection and management of many controllers and peripherals in a multi-master design.
Much like the requirements for the rest of the AMBA family it is targeted at high-perfor-
mance, high-frequency system designs. The AXI protocol is optimised for FPGA imple-
mentation through coordinated development with Xilinx and is used as a means of
communication between IP cores of an FPGA design.

The AXI protocol in particular exhibits the following key features[1]:

• address/control phases are separate from data phases

• byte strobes enable unaligned data transfers

• burst-based transactions possible with only start address issued

• read and write data channels are separate allowing low-cost Direct Memory Access
(DMA)

T

353

CHAPTER 19: AXI Interfacing
• multiple outstanding addresses can be issued

• transactions can be completed out-of-order

• register stages are easily added for timing closure

Whilst AMBA was first introduced in 1996, it wasn’t until the release of AMBA 3.0 in
2003 that the first version of AXI was included. AMBA 4.0, released in 2010, includes the
latest version of AXI known as AXI4[2].

19.2. Variations of AXI4

There exists three types of AXI4 interface, each suited to a different nature of appli-
cation[4].

• AXI4 — The high-performance interface, suited for memory mapped communi-
cation allowing bursts of up to 256 data transfer cycles per address phase.

• AXI4-Lite — A light-weight variant of the interface, used for memory mapped
single transactions. This variant has the benefit of a smaller logic footprint with a
simplified interface. This variation does not support burst data and so only provides
a single data transfer per transaction.

• AXI4-Stream — No address phase means this is not memory mapped and allows for
an unlimited data burst size. A single channel is defined for the transmission of
streaming data, modelled after the Write Data Channel in Figure 19.1 but allowing
bursts of an unlimited amount of data. Connection is from master to slave only, so if
bidirectional transfers are required both peripherals must be of type master/slave.

19.3. AXI Architecture

The AXI protocol features burst-based transactions, with each containing address and
control information on the address channel. Several AXI masters can be connected to
several AXI slaves through an AXI interconnect. An AXI master transfers data to an AXI
slave through the AXI interconnect using a write data channel (or a read data channel from
slave to master). The write transactions in particular have an additional write response
channel, as all data flows from master to slave and as such this is used for the slave to signal
completion of a write transaction. The following figures demonstrate communication
354

CHAPTER 19: AXI Interfacing
between an AXI master and slave. Note that the AXI interconnect is omitted in this
demonstration.

Figure 19.1 shows the write channel architecture, where address and control data is
passed from master to slave before a burst of data is transmitted, and a write response
signalled following completion.

Figure 19.2 on the other hand shows a read transaction, with address and control data
transmitted to the slave before a burst of read data is transmitted to the master.

M
A
S
T
E
R S

L
A
V
E

Address/

Control

Write

data

Write

data

Write

data

WRITE ADDRESS CHANNEL

WRITE DATA CHANNEL

WRITE RESPONSE CHANNEL

Write

response

Figure 19.1: AXI4 write channel architecture

M
A
S
T
E
R S

L
A
V
E

Address/

Control

Read

data

Read

data

Read

data

READ ADDRESS CHANNEL

READ DATA CHANNEL

Write

Figure 19.2: AXI4 read channel architecture
355

CHAPTER 19: AXI Interfacing
The AMBA AXI Protocol Specifications defines each of the channels in the protocol[1].

19.3.1. Address Channels

Read and write address channels are separate, and provide all the address and control
information regarding a transaction. This information dictates the operation of the
following AXI protocol mechanisms:

• bursts varying from 1 to 16 data transfers per burst

• burst transfer size of 8-1024 bits

• wrapping, incrementing and non-incrementing bursts

• caching and buffering control at the system-level

• atomic operations with exclusive or locked accesses

• secure and privileged access

19.3.2. Write Data Channel

The write data channel includes:

• a data bus ranging from 8-1024 bits wide

• a byte lane strobe for every eight bits of data, used for identifying valid bytes in the
data bus

19.3.3. Read Data Channel

Similarly the read data channel includes a data bus with an identical range but also a
read response which indicates the completion of a read transaction.

19.3.4. Write Response Channel

The write response channel allows signalling of a completion to a write transaction from
the slave by sending a completion signal once for each burst.

19.4. Examples of Applications

Table 19.1 details some of the available Xilinx IP that utilises each of the various AXI4
interfaces.
356

CHAPTER 19: AXI Interfacing
As previously mentioned, the standard AXI4 interface is the high-performance version
of the interface, best suited for more demanding IP requiring consistent, high-speed
performance.

AXI4-Lite features a smaller hardware footprint than its counterparts and so ideal for
lower-performance IP requiring minimal hardware utilisation.

As the name implies, AXI4-Stream is best suited for applications requiring a constant
stream of data.

Interface Industry Example Applications

AXI4 Audio and Video/
Image Processing

Video Direct Memory Access

Communications/
Networking

Ethernet VOIP Receiver, 3GPP LTE Channel
Decoder

Embedded Process-
ing

AXI/PLBV46 Bridges (for backwards compatibil-
ity), ChipScope AXI Monitor (for debugging/
embedded system diagnostics)

AXI4-
Lite

Audio and Video/
Image Processing

Deinterlacer, Gamma Correction, Image Edge
Enhancement

Automotive Controller Area Network (CAN)

Communications/
Networking

10 Gigabit Ethernet Media Access Controller,
Digital Predistortion (DPD), Crest Factor Reduc-
tion (CFR)

Embedded Process-
ing

Hardware ICAP, BRAM Interface Controller,
External Peripheral Controller

Table 19.1: Example applications of various AXI interfaces[1]
357

CHAPTER 19: AXI Interfacing
19.5. AXI Transactions

19.5.1. AXI Write-Burst Transaction

Figure 19.3 shows a simplified write-burst transaction using AXI4 for data to be written
at an address, A. The master drives the slave and transaction begins with the sending of
address and control information via the signal AWADDR. Following confirmation of a
valid address with AWVALID, a signal is sent to confirm that the system is ready for the
transaction on AWREADY. The master then sends the data blocks DATA(A0)-DATA(A2)
to the slave on the WDATA signal, with the final data item being indicated through the
WLAST signal going high and confirming the completion of the transaction[3]. The master
also sends various control signals regarding data bursts but these have been omitted from
the diagram for reasons of clarifying basic operation only.

19.5.2. AXI Read-Burst Transaction

Figure 19.4 demonstrates a simplified read-burst transaction using AXI4 for data being
read from a specific address, A. As with the write-burst, the slave is driven by the master
through transmission of address and control information in signal ARADDR. ARVALID
goes high signalling a valid address and the system is confirmed ready for transmission
with the signal ARREADY. Data blocks are read from address A via the signal RDATA, and
as before the final data block is indicated via signal RLAST[3]. Note the RVALID signal,
kept low by the slave until read data is available.

AXI4-
Stream

Audio and Video/
Image Processing

Streaming video input/output, image noise reduc-
tion

Communications/
Networking

Encoders/decoders, interleavers/deinterleavers

DSP CORDIC, FFT, FIR Compiler

Embedded Process-
ing

Streaming FIFO, Ethernet peripheral,

Interface Industry Example Applications
358

acing
CHAPTER 19: AXI Interf

ACLK

AWADDR

AWVALID

AWREADY

WDATA

WLAST

A

DATA(A0) DATA(A1) DATA(A2)

Figure 19.3: Simplified AXI4 write burst transaction

Figure 19.4: Simplified AXI4 read burst transaction

ACLK

ARADDR

ARVALID

ARREADY

RDATA

RLAST

A

DATA(A0) DATA(A1) DATA(A2)
359

CHAPTER 19: AXI Interfacing
As stated in Section 19.1, the AXI protocol allows out-of-order transactions. Each trans-
action is given an identifying tag issued by the interconnect that governs whether a trans-
action must be completed in the order they are issued or if they can in fact be transmitted
out-of-order. This is beneficial in the instance where system performance can be improved
as[3]:

• Slaves with faster-response times are prioritised above those that are slower.

• Read data can be returned from slaves out-of-order, for example if data required later
is available in the buffer before more immediately required data is available.

19.6. AXI in the Xilinx Toolflow

The process of implementing IP incorporating AXI interfaces on a Zynq chip is easily
approached through use of the Vivado IP Integrator.

Figure 19.5 shows a single AXI Data FIFO part as implemented using the Vivado IP
Integrator. The block features a slave AXI bus, S_AXI, as well as a master AXI bus, M_AXI,
both based on the standard AXI4 interface. Expanding these buses by clicking on the +
reveals the signals contained within. In Figure 19.6, the slave bus has been expanded to
reveal all the corresponding signals.

S_AXI

aclk

aresetn

M_AXI

Figure 19.5: Representative AXI4 data FIFO in Vivado IP Integrator
360

CHAPTER 19: AXI Interfacing

For a full breakdown of each of the listed signals you should refer to the Xilinx AXI

S_AXI

aclk

aresetn

aclk

aresetn

s_axi_awaddr[31:0]
s_axi_awlen[7:0]

s_axi_awsize[2:0]

s_axi_awburst[1:0]

s_axi_awlock[0:0]
s_axi_awcache[3:0]

s_axi_awprot[2:0]

s_axi_awregion[3:0]

s_axi_awqos[3:0]

s_axi_awvalid
s_axi_awready

s_axi_wdata[31:0]

s_axi_wstrb[3:0]

s_axi_wlast

s_axi_wvalid
s_axi_wready

s_axi_bresp[1:0]

s_axi_bvalid

s_axi_bready

s_axi_araddr[31:0]
s_axi_arlen[7:0]

s_axi_arsize[2:0]

s_axi_arburst[1:0]

s_axi_arlock[0:0]

s_axi_arcache[3:0]
s_axi_arprot[2:0]

s_axi_arregion[3:0]

s_axi_arqos[3:0]

s_axi_arvalid

s_axi_arready
s_axi_rdata[31:0]

s_axi_rresp[1:0]

s_axi_rlast

s_axi_rvalid

s_axi_rready

M_AXI

Figure 19.6: Representative AXI4 data FIFO in Vivado IP Integrator (bus expanded)

1

2

3

4

5

361

CHAPTER 19: AXI Interfacing
Reference Guide[4], however we can relate some of the signals in Figure 19.6 to the
channels highlighted in Section 19.4.

• Write Address Channel — the signals contained within this channel are named in
the format s_axi_aw...

• Write Data Channel — the signals contained within this channel are named in the
format s_axi_w...

• Write Response Channel — the signals contained within this channel are named in
the format s_axi_b...

• Read Address Channel — the signals contained within this channel are named in
the format s_axi_ar...

• Read Data Channel — the signals contained within this channel are named in the
format s_axi_r...

You should note the presence of signals highlighted in Section 19.5 regarding the read
and write operations, as well as a wealth of different control signals.

Figure 19.7 gives an example of the connections between AXI devices and the Zynq
processing system as configured in Xilinx Vivado IP Integrator. The key to operation is the
use of the AXI Interconnect block (instance named axi_intercon_1 in this system). This
interconnect is a slave to the master processing system, and is a master routing signals from
the processor to various instances of slave AXI devices. In this system, the interconnect is
connected to two slave devices; AXI GPIO (gpio_1) and an AXI BRAM controller
(bram_ctrl_1).

Focusing on the AXI Interconnect in particular, there are several different signals to
consider.

• There is one slave input, S00_AXI and corresponding clock input S00_ACLK coming
from the master AXI output of the processing system and the processor clock
respectively.

• This clock also supplies the clock input for the two AXI devices and their master
inputs on the AXI Interconnect.

• All reset signals come from a processor reset block not included in this view for
simplicity.

1

2

3

4

5

362

CHAPTER 19: AXI Interfacing
• The outputs of the AXI Interconnect are both master channels containing the signals
detailed in Figure 19.6, each driving a respective slave device.

• Further detail on the utilisation of Xilinx IP Integrator with reference to connecting
blocks is discussed in Chapter 18.

S
0
0
_
A
X
I

M
0
0
_
A
X
I

M
0
1
_
A
X
I

A
C
L
K

A
R
E
S
E
T
N
[0
:0
]

S
0
0
_
A
C
L
K

S
0
0
_
A
R
E
S
E
T
N
[0
:0
]

M
0
0
_
A
C
L
K

M
0
0
_
A
R
E
S
E
T
N
[0
:0
]

M
0
1
_
A
C
L
K

M
0
1
_
A
R
E
S
E
T
N
[0
:0
]

M
_
A
X
I_
G
P
0
_
A
C
L
K

D
D
R

F
IX
E
D
_
IO

U
S
B
IN
D
_
0

M
_
A
X
I_
G
P
O

F
C
L
K
_
C
L
K
0

F
C
L
K
_
R
E
S
T
0
_
N

S
_
A
X
I

S
_
A
X
I_
A
C
L
K

S
_
A
X
I_
A
R
E
S
E
T
N

B
R
A
M
_
P
O
R
T
A

B
R
A
M
_
P
O
R
T
B

S
_
A
X
I

S
_
A
X
I_
A
C
L
K

S
_
A
X
I_
A
R
E
S
E
T
N

G
P
IO

B
R
A
M
_
P
O
R
T
A

B
R
A
M
_
P
O
R
T
B

Z
y
n
q
7

P
ro
c
e
s
s
in
g

S
y
s
te
m

A
X
I
In
te
rc
o
n
n
e
c
t

A
X
I
B
R
A
M

C
o
n
tr
o
ll
e
r

A
X
I
G
P
IO

B
lo
c
k

M
e
m
o
ry

G
e
n
e
ra
to
r

F
IX
E
D
_
IO

D
D
R

G
P
IO

Figure 19.7: Example of an AXI interconnect setup
in Vivado IP Integrator

1 2 3

1
2 3

Th
e

AX
I
ma

ste
r
sig

na
l
fro
m

the
 Z

yn
q

pr
oc
es
sin

g
sy
ste

m
co
nn
ec
ts

to
the

AX

I
sla

ve
 p
or
t
of

the
 A

XI
 I
nte

rco
nn
ec
t
blo

ck

An

AX

I
ma

ste
r

sig
na
l
fro
m

the

AX

I
Int
er
co
nn
ec
t
co
nn
ec
ts

to
the

AX

I
sla

ve

po
rt
of

the
 B

RA
M

co
ntr
oll
er

An

AX

I
ma

ste
r

sig
na
l
fro
m

the

AX

I
Int
er
co
nn
ec
t
co
nn
ec
ts

to
the

AX

I
sla

ve

po
rt
of

the
 G

PI
O

ins
tan

ce
363

CHAPTER 19: AXI Interfacing
19.7. Summary

In this chapter the AMBA AXI4 interface for IP integrated on a Zynq chip has been
introduced. The variations of AXI4 have been presented, with some example IP applica-
tions from the Xilinx IP catalogue. Utilisation of the AXI interface with Xilinx IP via
Vivado IP Integrator has also been highlighted.

19.8. References

Note: all URLs last accessed June 2014.

[1] ARM, “Introduction — Channel Definition” in AMBA AXI Protocol Specification, v1.0, June 2003..

[2] Xilinx, Inc, “AXI4 IP Catalogue”, http://www.xilinx.com/products/intellectual-property/
axi_interconnect.htm

[3] ARM, “Introduction — Basic Transactions” in AMBA AXI Protocol Specification, v1.0, June 2003.

[4] Xilinx, Inc, “AXI Reference Guide”, UG761, v14.3, November 2012.
364

20

Adventures with

IP Integrator

n this practical chapter, the IP blocks that were created in Chapter 13 - IP Block
Design will be brought together to form a DSP system which will run on the ZedBoard.
The features of Vivado IP Integrator block design will explored, and existing IP from the IP
Catalog will also be used. Further, the Xilinx Design Constraints (XDC) format will be
introduced in order to map the external ports from the IP Integrator design to individual
pins on the ZedBoard.

A prepackaged I2S controller for the Analog Devices ADAU1761 audio codec on the
ZedBoard will also be used in order to allow input and output of audio signals to the
design, and the necessary changes and connection to the Zynq processor will be
highlighted.

The complete Zynq embedded system will take audio input from the provided audio
codec and add a tonal noise component which will be generated from the NCO. The
corrupted audio signal will be passed as the input to the LMS filter, and the pure NCO
tonal signal will be used as the reference signal. The LMS filter will then be used to remove
the tonal noise from the audio signal, resulting in a clear audio signal being produced at the
output. An echo effect will also be introduced at the output of the LMS filter, with a user
definable delay length. The delay length will be displayed on the ZedBoard LEDs.

I

365

CHAPTER 20: Adventures with IP Integrator
An overview of the complete DSP system is provided in Figure 20.1.

20.1. Aims and Outcomes

The main aim of this set of practical exercises is to use Vivado IP Integrator to bring
together the custom IP modules that were created in the previous exercises, as well as IP
from the IP Catalog, to create a DSP system for implementation on the ZedBoard.

After completing this tutorial you will be able to:

• Add a IP to the IP Catalog from a wide-array of sources.

• Combine and connect IP from various sources to create a full IP Integrator block
design.

• Fully utilise the IP Integrator Designer Assistance and Connection Automation
tools.

• Customise the Zynq Processor system.

• Map external ports to device pins using the XDC file format.

• Create software applications to fully control custom IP modules in the Zynq PL.

NCO

Audio

Codec

LMS

PL

Board

Figure 20.1: Overview of complete DSP system
366

CHAPTER 20: Adventures with IP Integrator
20.2. Exercise 4A

In this exercise, the IP modules which were created in the previous practical exercises
will be imported into the IP Catalog by adding the required IP repositories. A ZedBoard IP
Integrator design will be created, with all the required connections made.

The steps involved in this exercise are:

1. Add all required custom IP repositories to the IP Catalog and import the IP.

2. Create initial IP Integrator block diagram.

3. Explore the individual custom IP blocks and their available block parameters.

Exercise 4A is available on the website: www.zynqbook.com

20.3. Exercise 4B

Building upon the IP Integrator design that was created in Exercise 3B, prepackaged IP
that interacts with the audio codec on the ZedBoard will be introduced, imported into IP
Integrator and required modifications to the Zynq processor block made. External port and
interface connections will be made in the design, and XDC constraints file created to map
all external ports to their corresponding pins on the ZedBoard.

The steps involved in this exercise are:

1. Add audio codec controller IP to the IP Catalog.

2. Include the audio codec controller in the existing IP Integrator block diagram.

3. Make required changes to the Zynq Processor to add an addition fabric clock and
enable an I2C interface to communicate with the audio codec conroller.

4. Create required external interfaces for communication with the audio codec.

5. Map the external interfaces of the design to individual pins on the ZedBoard by
adding entries to the XDC constraints file.

6. Generate hardware for the finalised design.

Exercise 4B is available on the website: www.zynqbook.com
367

CHAPTER 20: Adventures with IP Integrator
20.4. Exercise 4C

The finalised design from Exercise 3B will be exported to the SDK for software devel-
opment. The software application which controls the interactions between the various IP
modules in the DSP system will be created, and the various software driver files intro-
duced.

The final step to test the DSP system will be carried out by running the newly created
software application on the ZedBoard to ensure that all parts are working together
correctly.

The steps involved in this exercise are:

1. Export the finalised hardware design to the SDK.

2. Create a new application project.

3. Import the required custom IP driver files.

4. Create a software application which will communicate, and control interactions,
with the custom IP blocks.

5. Run the test application and ensure that everything functions correctly.

Exercise 4C is available on the website: www.zynqbook.com

20.5. Possible Extensions

Having completed Exercise 4C, there are some possible variations you can introduce to
personalise the developed system. For example:

• As the development of this system has focussed solely on audio, you could develop a
system which performs some video processing using the VGA or HDMI connec-
tions.

20.6. What Next?

This set of practical exercises concludes Part B of the book, “Zynq SoC & Hardware
Design”.

Next, we move onto Part C, which looks at the idea of operating systems on Zynq, with
particular emphasis on the Linux OS.
368

PART C
Operating Systems &

System Integration

21

Introduction to Operating

Systems on Zynq

ne of the main questions that a designer is faced with when developing an
embedded system is whether or not to include an embedded OS. The information
presented in this chapter aims to help answer this question and will detail the scenarios
where an embedded OS should be used, the categories of OS that exist and the numerous
different OSs that are available. The options that are available in terms of making the most
of the dual-core processor available on the Zynq platform will also be explored.

21.1. Why Use an Embedded Operating System?

Although an embedded OS is not necessary for all embedded systems applications, there
are a number of advantages to their use; this section highlights many of these advantages
and will provide some examples where appropriate.

21.1.1. Reducing Time to Market

When developing an embedded system there are a number of key areas in which an
embedded OS can reduce the development time.

OS vendors provide support for a wide array of architectures and platforms; this is
advantageous if there comes a point during product development that it is deemed
necessary to move to a new processing platform. As the software that has already been

O

371

CHAPTER 21: Introduction to Operating Systems on Zynq
developed is targeted at an OS, rather than a specific device, the process of moving to a new
architecture or device should not be problematic.

For example, there is a large degree of similarity between embedded Linux and the tradi-
tional Desktop version. If a designer has a familiarity with developing applications for the
Desktop variety of Linux, the move to developing for embedded Linux will be straight-
forward and the learning curve will be relatively shallow. This will substantially reduce, if
not remove, the time required for a designer to become familiar with a new development
environment. It is also worth noting that most embedded OS vendors include, or have
third-party support for, the Eclipse IDE.

Improved portability can be achieved through the use of an OS with a standardised
system interface, such as the Portable Operating System Interface (POSIX), whereby the
user command line and scripting interface of the OS is constant. POSIX was jointly
developed, and continues to be maintained, by a working group consisting of members of
the IEEE Portable Applications and Standards Committee, The Open Group, and members
of the ISO/IEC Joint Technical Committee 1 [6]. This group is collectively known as the
Austin Group [6].

By using POSIX standardised OSs, the impact of moving development from one OS to
another is reduced as the high-level calls do not need to be ported to the new OS due to the
use of the POSIX API. Generally speaking, the use of POSIX standardised OSs provides a
greater flexibility in OS-level portability.

21.1.2. Make Use of Existing Features

Embedded OSs offer support for many features which would otherwise have to be
developed by the system designer; a number of these features are highlighted below.

When incorporating a display into an embedded platform — whether it be a low
resolution, internal LCD panel or an external display output via HDMI — the system must
be able to support it. The degree of support that is necessary depends on the specific appli-
cation but it can generally be split into two levels: driver support and graphical interface
support. By choosing to use an established OS you will generally have access to both driver-
level and interface-level support.

Driver-level support provides the low-level software that makes the connection between
the embedded processor and the display, allowing the system to support the specific
interface used. Certain aspects that are controlled at the driver- level include signal timing
and synchronisation, screen resolution, buffer formats and screen refresh rates. Many OSs
372

CHAPTER 21: Introduction to Operating Systems on Zynq
come with support for a large range of video drivers; this removes the need to develop a
driver from scratch, which can be a complex and time consuming process.

Graphical interface-level support deals with the high-level graphical content that is to be
displayed. This can range from a single line text display, to a fully featured GUI. OSs
provide high-level APIs for graphical development, as well as providing a functioning GUI.

21.1.3. Reduce Maintenance and Development Costs

By making use of an embedded OS you reduce the amount of custom code that needs to
be developed and tested. In reality, this amounts to far fewer potential bugs being intro-
duced to the software, which in turn reduces the time and cost of testing the system to find
and remove them. An OS will provide a stable platform, which has been extensively tested,
so that you can concentrate on developing the custom features of your system and not
debugging low-level code. By making use of the tool suite provided by the OS vendor you
will have access to OS-aware profiling and debugging tools which will speed up devel-
opment and aid in finding any performance bottlenecks. The tool suite will also be
essential if developing software for multi-threaded processing systems.

Another area in which OSs can reduce maintenance costs is through the provision of
support outside of the in-house development team. Most commercially available OS
vendors will have support teams which will be able to help with OS platform problems,
whether it be over the phone or via email. While open source based OSs may not have
dedicated support teams available, they do have extensive online knowledge bases and
dedicated users who can offer support via online forums. In some cases, companies may
produce a commercial version of an open source OS which includes proprietary features. If
this is the case, support is usually provided by the OS vendor, who can also help with open
source licensing issues.

OS vendors will periodically release updates and improvements to the OS meaning that
you do not have to worry about improving the underlying code, and can instead concen-
trate on custom functionality. By focusing your time on custom development you will stay
ahead of the competition.

21.2. Choosing the Right Type of Operating System

There are a number of possibilities when determining the type of OS to use on an
embedded system. Such examples include a simple standalone OS, a RTOS or specialised
embedded OS such as the numerous variations of embedded Linux.
373

CHAPTER 21: Introduction to Operating Systems on Zynq
Before that choice can be made, however, we should consider the type of embedded OSs
that are available.

21.2.1. Standalone Operating Systems

A standalone OS, also known as a bare metal OS, is a simple OS that aims to provides a
very low-level of software modules that the system can use to access processor-specific
functions.

Regarding the Zynq platform specifically, Xilinx provides a standalone OS platform that
provides functions such as configuring caches, setting up interrupts and exceptions and
other hardware related functions. The standalone platform sits directly below the OS layer
and is used whenever an application requires to access processor features directly [8].

A standalone OS enables close control over code execution but is fairly limited in terms
of functionality. It should only be used for applications where the software functions are
straightforward and repetitive. The number of tasks being carried out by a standalone OS
should be relatively small, as adding further tasks can increase the task management
required by the standalone rapidly.

21.2.2. Real-Time Operating Systems (RTOS)

The defining feature of a RTOS is the degree of determinism that is guaranteed by the
scheduler; the purpose of a RTOS is not to achieve a high throughput, but instead to
respond both quickly and predictably for a given task.

The function of many embedded systems demand that the software responds to events
within a short, defined response time. Given this requirement, real-time systems can be
categorised as one of three types: soft real-time, hard real-time or firm real-time [3].

A soft real-time system is one in which the meeting of a response deadline is preferred
but not critical. A failure to meet the specified response time will not destroy the perfor-
mance of the system, but may degrade it.

A hard real-time system, however, is one in which the missing of a response time is
unacceptable and could lead to the overall failure of the system.

Firm real-time systems are a middle ground between hard or soft systems; a small
number of missed response deadlines will not lead to the overall failure of the system, but a
larger number of missed deadlines may result in total failure of the system [3].

Most modern RTOS systems include a set of high-level functions that complement the
real-time kernel. Such functions can include a GUI, communications protocol stacks and a
374

CHAPTER 21: Introduction to Operating Systems on Zynq
certain degree of peripheral device management. In an embedded system, the RTOS
controls the device and is responsible for providing the required level of responsiveness.
Software tasks are controlled by the RTOS which schedules the CPU time allocated to each
of the tasks accordingly[1].

21.2.3. Other Embedded Operating Systems

While a RTOS is suitable for the management of real-time applications on embedded
systems, they do not generally offer the highest system throughput or performance. For
applications that require high system performance, another type of OS is usually required.

Traditionally, the preferred option would be an embedded Linux solution but, with the
recent developments in mobile OSs such as Android, there are more options capable of
delivering high system performance for an embedded system.

Linux

Linux and the Linux kernel are covered in detail in Chapter 22 and Chapter 23 respec-
tively, so we shall skip over it for now.

Android

Android is an OS which is mainly intended for use on touchscreen mobile devices, i.e.
mobile phones and tablet computers. Originally created by Android, Inc. — a company
financially backed by Google — Android was later bought, and is now developed and
maintained, by Google. Due to its open source status, Android has since been customised
for use on non-mobile devices such as smart TVs, cameras, media players, laptop
computers, and wrist watches.

Google released the source code for Android under the Apache V2 open source license
which means that anyone, be it a mobile phone manufacturer or a smart TV developer,
who innovates using the Android platform has no requirement to share those additions
with the open source community [4]. This makes Android a very commercially-friendly
platform to work with.

The Android OS comprises of a kernel derived from the Linux kernel v2.6 for all
versions up to and including Android 3.2, after which Android 4.0 and onwards are based
on Linux kernel 3.x [12]. The Android software architecture, however, is largely different
from that of a traditional Linux system, including some changes to the fundamental kernel
functionality. Due to Android initially being targeted at mobile devices, a number of
aggressive power management policies were introduced to minimise power consumption
375

CHAPTER 21: Introduction to Operating Systems on Zynq
by forcing the kernel to go into sleep mode whenever possible. This is in contrast to the
traditional desktop Linux variations which largely tend to never allow the kernel to enter
sleep mode. Other changes include the introduction of timed GPIOs, alarm timers,
paranoid network security, and the binder Inter-Process Communication (IPC), amongst
others. The overall software architecture of Android is detailed in Figure 21.1.

It is the more recent adoption of Android for non-mobile devices that is of interest here.
There are a number of reasons — aside from its open source status — which make Android
an appealing platform on which to build embedded systems. We will now take a look at few
of those.

One of the things that makes Android desirable for developers is the fully featured SDK
which provides a regular framework to work with through the use of a standardised API.
Although Android is an ever-evolving platform, that has gone through a large number of
releases in recent years, the API remains generally constant across releases; this allows

Applications

PhoneContactsBrowserHome
Media
Player

Application Framework

Notification
Manager

Content
Manager

Telephony
Manager

Package
Manager

Activity
Manager

Location
Manager

Window
Manager

Resource
Manager

Wireless
Manager

Battery
Manager

Native Libraries

Android Runtime

Core
Libraries

Dalvik
VM

Surface
Manager

OpenSSLOpenGL

WebKit
Media

FrameworkC Library

Linux Kernel

Binder IPC
Power

Management

Drivers: Display, Audio, Network, IO, Memory ...

Logger

Figure 21.1: Android OS architecture
376

CHAPTER 21: Introduction to Operating Systems on Zynq
developers to make a reasonably safe long-term investment as they can make savings by
only designing and compiling applications once for multiple targets [12].

Android has out-of-the box support for a wide array of sensors (including GPS, acceler-
ometer and camera), networking (WiFi, Bluetooth, NFC, 2G/3G) and also a large number
of common multimedia formats. If your embedded application needs to make use of one or
more of these features, then choosing Android could well improve your development time.
Furthermore, due to its widespread use in mobile phones and tablets, the Android user
interface is familiar to many potential users, thus reducing the learning curve.

21.2.4. Further Considerations

Other questions to consider when choosing an embedded OS:

• How much does it cost?

• How experienced is your design team in its use?

• How secure is it?

21.3. Applications

As mentioned in the previous section, the type of OS used for an embedded system
depends on the type of application the system will be used for. If the intended application
requires the system to respond to events within a strict time period, then the typical choice
would be to user a RTOS. A simple example of this is the anti-locking braking system in a
car, which requires that the brakes be freed within a specified time in order to prevent the
car from skidding. However, other applications for embedded systems which are required
to provide a high-level of system performance, without the need for the predictable
response times of an RTOS would require an embedded OS such as Linux or Android.
Such an example of this would be a TV set top box recorder that is required to provide a file
system for the storage of television recordings, video processing, and a GUI for user inter-
action. The levels of embedded OS performance are depicted in Figure 21.2.
377

CHAPTER 21: Introduction to Operating Systems on Zynq
21.4. Multi-Processor Systems

The choice of OS for an embedded application may also depend on the number of
processors in the system. As is the case with the Zynq platform, the system may include a
multi-core processor, in which case you must make the decision whether to use a single OS
which will run on both processing cores, or multiple OSs running on individual cores.

Figure 21.2 introduces the terms Asymmetric Multi-Processing (AMP) and Symmetric
Multi-Processing (SMP) in terms of OS support. It is, however, useful to understand their
definitions in terms of the system architecture as well.

Asymmetric multi-processing can be used on a system that utilises multiple CPU cores,
which may be of different architectures. Each CPU, or CPU core, can run its own instance
of an OS, which can either be homogeneous or completely different. An example of this
would be a system running an RTOS on one CPU while running a Linux based GUI on
another CPU. Communication between the CPU cores is facilitated through the use of
shared memory, which provides a level of software abstraction.

Symmetric multi-processing on the other hand requires that all CPUs in the system are
of matching architectures. A single OS instance is run across all CPUs which divides and
coordinates the processing tasks between them. As with AMP, the shared memory space is
used for communication between CPUs, as well as for the coordination of task execution.

High-speed performance

Real-time performance

RTOS Standalone
Linux

Android

Symmetric

multi-processing

(SMP)

Asymmetric

multi-processing

(AMP)

Figure 21.2: Embedded operating system performance
378

CHAPTER 21: Introduction to Operating Systems on Zynq
The differences between AMP and SMP with reference to the dual-core ARM archi-
tecture of the Zynq platform is depicted in Figure 21.3.

21.5. Zynq Operating Systems

Now that the various types of OS, and their corresponding uses, have been introduced it
would be useful to take a more detailed look at a couple of specific OSs from each category.
The aim here is to provide a closer look at a number of OS choices and provide information
on specific features that are available; how and where to find them; whether they are open
source or commercially available; and the support that is available for each.

As was the case previously, this section will be split into two parts with one detailing a
number of available Linux options, while the other will cover RTOS.

21.5.1. Linux

This section introduces a number of embedded Linux OSs and environments which are
compatible with Zynq.

ARM

Core 1

ARM

Core 0

Shared Memory

RTOS Kernel

Tasks

Linux Kernel

Tasks

Asymmetric Multi-Procesing (AMP)

ARM

Core 1

ARM

Core 0

Shared Memory

Linux Kernel

Tasks

Symmetric Multi-Procesing (SMP)

Figure 21.3: Asymmetric vs. symmetric multi-processing
379

CHAPTER 21: Introduction to Operating Systems on Zynq
Xilinx Zynq-Linux

Zynq-Linux is an open source OS freely available from Xilinx. It is based on the 3.0
Linux kernel from kernel.org and includes a number of additions from Xilinx, such as a
BSP and specific device drivers. A list of included device drivers is provided in Table 21.1
[9].

Table 21.1: Included device drivers for Zynq-Linux kernel [9]

Component Driver Location In Mainline
Kernel

Analog-to-Digital Converter drivers/hwmon/xilinx-xadcps.c No

ARM global timer drivers/clocksource/arm_global_timer.c Yes

ARM local timers arch/arm/kernel/smp_twd.c Yes

CAN Controller drivers/net/can/xilinx_can.c No

DMA Controller (PL330) drivers/dma/pl330.c Yes

Ethernet MAC drivers/net/ethernet/xilinx/xilinx_emacps.c No

drivers/net/ethernet/cadence/macb.c Yes

GPIO drivers/gpio/gpio-xilinxps.c No

I2C Controller drivers/i2c/busses/i2c-cadence.c Yes

Interrupt Controller arch/arm/common/gic.c Yes

L2 Cache Controller (PL310) arch/arm/mm/cache-l2x0.c Yes

QSPI Flash Controller drivers/spi/spi-xilinx-qps.c No

SD Controller drivers/mmc/host/sdhci-of-arasan.c Yes

SDIO WiFi drivers/net/wireless/ath/ath6kl/sdio.c Yes

SPI Controller drivers/spi/spi-xilinx-ps.c No

Triple Timing Counter drivers/clocksource/cadence_ttc.c Yes

UART drivers/tty/serial/xilinx_uartps.c Yes

USB Host drivers/usb/host/xusbps-dr-of.c No

USB Device drivers/usb/gadget/xilinx_usbps_udc.c No

USB OTG drivers/usb/otg/xilinx_usbps_otg.c No
380

CHAPTER 21: Introduction to Operating Systems on Zynq
It should be noted that not all drivers are included in the mainline kernel, and can only
be found in the Xilinx tree. Those included in the mainline kernel are indicated in Table
21.1. Drivers that are only found in the Xilinx tree may be old, and could be removed at any
time.

Support is also provided for SMP, allowing the kernel to use both CPUs, and can also be
configured to use a single CPU.

As well as providing access to all source code from the Xilinx repository, prebuilt
releases are also available from the Xilinx Getting Started website.

http://www.wiki.xilinx.com/Getting+Started

Petalogix® - Petalinux

PetaLinux is provided in the form of a SDK that provides the combination of a fully-
functional embedded Linux distribution and a development environment which integrates
with the Xilinx hardware design flow [10]. PetaLinux provides a complete package that
consists of everything required to build, test, develop and deploy embedded Linux systems.

PetaLinux comprises of three constituent parts:

• A fully customisable embedded Linux OS for Xilinx devices.

• Pre-built binary images (which are bootable out-of-the-box).

• PetaLinux SDK

Xillybus - Xillinux

Xillinux is a desktop distribution of Linux that will allow you to run a full graphical
desktop environment on the Zedboard; a keyboard and mouse can be attached via the USB
On-The-Go port of the Zedboard, while a monitor can be connected to the provided VGA
port [7]. As well as providing a full Linux distribution, Xillybus also supply a development
kit for interaction between the Linux host and peripherals running on the programmable
logic. This is in the form of FIFOs on the logic side, and native Linux file operations on the
host side. The Linux distribution, which is based upon the popular desktop distribution of
Ubuntu 12.04 Long Term Support (LTS), and the development kit are available for free
download from the Xillybus website [7].
381

CHAPTER 21: Introduction to Operating Systems on Zynq
21.5.2. RTOS

FreeRTOS

FreeRTOS is a lightweight real-time OS that is available for a wide range of devices and
processor architectures. The core of the FreeRTOS kernel is made up of only 3 C files,
making it very simple, and it has a minimal ROM, RAM and processing overhead — in
many cases the kernel image size will be between 4 to 9 KB [5]. Xilinx provides an already
developed version of the OS which is freely available from the FreeRTOS website [5].

21.5.3. Further Operating Systems

There are a large number of OSs for Zynq which are provided by Xilinx partners — far
too many to cover in the context of this book. A list of solutions is provided in Table 21.2.
Further details of any of the products listed can be found on the Zync-7000 SoC Ecosystem
website [11].

Table 21.2: Zynq operating systems available from Xilinx partners

Xilinx Partner Operating System/Software

Adeneo Embedded Windows Embedded Compact 7, Linux,
Android and QNX

Discretix Security-centric software and IP

ENEA Software AB OSE RTOS and ENEA Linux

eSOL uITRON 4.0 RTOS, T-Kernel RTOS and IDE

Green Hills Software INTEGRITY RTOS

Express Logic ThreadX RTOS

iVeia Android for Zynq

Mentor Graphics Nucleus RTOS

Micrium uC/OS RTOS

MontaVista Software MontaVista Carrier Grade Linux

Open Kernel Labs OKL4 Microvisor

QNX QNX RTOS
382

CHAPTER 21: Introduction to Operating Systems on Zynq
21.6. Chapter Review

In this chapter the concept of embedded OSs has been introduced along with the
reasoning behind their use. The various types of embedded OS were described and a
number of examples provided along with example applications of possible products and
devices. The concept of multi-processor systems was also introduced. In the next chapter
we will take a more in-depth look at the Linux OS.

21.7. References

NOTE: All URLs last accessed June 2014.

[1] ARM, “Real-Time Operating Systems (RTOS)” webpage.
Available: http://community.arm.com/docs/DOC-2764

[2] Embedded Linux Wiki, “Android Kernel Features”, webpage.
Available: http://elinux.org/Android_Kernel_Features

[3] P. A. Laplante and S. J. Ovaska, “Fundamentals of Real-Time Systems” in Real-Time Systems Design and
Analysis:Tools for the Practitioner, 4th Ed. Wiley-IEEE Press, 2012, pp. 1 - 25.

[4] Open Handset Alliance, “Android Overview”, webpage.
Available: http://www.openhandsetalliance.com/android_overview.html

[5] Real Time Engineers Ltd, “FreeRTOS”, webpage.
Available: http://www.freertos.org/

Quadros RTXC RTOS

Real Time Engineers Ltd FreeRTOS

Sierraware Open Source Hypervisor and Trusted Execu-
tion Operating System

SYSGO Safe and Secure Virtualisation and Operating
System

Timesys LinuxLink

Wind River VxWorks, Linux and Workbench IDE

Table 21.2: Zynq operating systems available from Xilinx partners

Xilinx Partner Operating System/Software
383

http://community.arm.com/docs/DOC-2764

CHAPTER 21: Introduction to Operating Systems on Zynq
[6] The Open Group, “The Open Group Base Specifications Issue 7, IEEE Std 1003.1™, 2013 Edition”.
Available: http://pubs.opengroup.org/onlinepubs/9699919799/

[7] Xillybus, “Xillinux: A Linux distribution for the Zedboard”, webpage.
Available: http://xillybus.com/xillinux

[8] Xilinx, Inc, “OS and Libraries Document Collection”, UG643, June 2014.
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/oslib_rm.pdf

[9] Xilinx, Inc, “Linux Drivers”.
Available: http://www.wiki.xilinx.com/Linux+Drivers

[10]Xilinx, Inc, “PetaLinux Software Development Kit”.
Available: http://www.xilinx.com/tools/petalinux-sdk.htm

[11]Xilinx, Inc, “Zynq-7000 AP SoC Ecosystem”.
Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ecosystem/index.htm

[12]B. Zores, “The Growth of Android in Embedded Systems”, The Linux Foundation Training Publication,
2012.
Available:
http://training.linuxfoundation.org/free-linux-training/download-training-materials/growth-of-android-
in-embedded-systems
384

22

Linux: An Overview

his chapter will provide an overview of the Linux Operating System, beginning with
a whistle-stop tour of the events leading up to the creation of Linux. A general system
overview will be provided to pave the way for in depth analysis in future chapters. In
particular these chapters will cover the Linux kernel and file system, device drivers and
boot sequence.

Some of the tools and resources available for those with an express interest in Linux and
application development will be presented.

22.1. A Brief History

Linux was conceived in April 1991, with the first announcement of the project given in
August that year. A Finnish computer science student by the name Linus Torvalds made
the following announcement on the Usenet group comp.os.minix:

“I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu)
for 386(486) AT clones. This has been brewing since april, and is starting to get ready. I'd
like any feedback on things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).”

—Linus Torvalds (August 25th, 1991)

T

385

CHAPTER 22: Linux: An Overview
The Minix he was referring to is a variant of the UNIX OS, which was used as a guideline
for the development of a free OS targeted towards the x86 consumer PCs of the time.

If we go back in time to 1983, Richard Stallman had previously embarked upon a project
to create a free (as in free speech, not free beer), UNIX-like operating system known as
GNU, a recursive acronym for “GNU’s Not UNIX”. In fact, the origins of Linux go even
further back with the creation of the UNIX OS in AT&T’s Bell Laboratories back in the
early 1970s!

 The major motivation for the GNU Project was the domination of proprietary software
during the 80s. A free OS was seen as the fundamental step in paving the way for ‘free’
computing. However, writing an OS is no small undertaking, and by 1990 (and with
funding from the Free Software Foundation in October 1985) all major components of the
OS had been developed, except one. This final component, the core of the OS, is known as
the kernel [1]. Using the GNU tools provided by Stallman, Torvalds created the Linux
kernel (which will be discussed in detail in Chapter 23), marking the origins of Linux as it
exists today.

 Linux is a collaborative development, with many developers from many different
companies cooperating on development labour, research and costs to form an ecosystem
that is estimated to have grown from $12.3 billion in 2008 to $35.5 billion in 2013[2].
Today, Linux is more popular than ever and can be found in a vast range of devices, from
mobile phones and satellite navigation systems to supercomputers and servers.

22.2. Linux System Overview

Figure 22.1 represents a generalised high-level architecture of a GNU/Linux System. In
reality, the kernel space is a much more complicated concept, containing many more
components. For our purposes, however, we shall consider only the most important ones.

The applications and system programs, as well as the GNU C library run on top of the
kernel in the user-space. Applications refer to programs with a useful function, such as
word processing, games, or C applications developed to run on the processor of a Zynq
chip. System programs, however, are necessary in implementing various OS services that
ensure the system actually works! The physical hardware resides at the opposite end of the
chain and as such is abstracted from the user-level by the kernel space; this includes any
system storage, network cards or the GPIO on a development board, for example. The
indirect nature of access between the user-level and the hardware provides security as it
ensures regulations through use of the kernel tools[3].
386

CHAPTER 22: Linux: An Overview
The System Call Interface (SCI) facilitates function calls from the user space to the
kernel of the system. As previously discussed, the Linux kernel forms the heart of the OS
and provides a set of tools with which the user space can interact with hardware. The Linux
kernel itself can be broken up into its own layered subsystems such as memory and process
management, the virtual file system and device drivers; however, these will be covered in
further detail in Chapter 23. The kernel code is considered architecture-independent as
this code is common to all processor architectures supported by Linux. Below this is the
architecture-dependent code; that is, code which is processor and platform-specific and is
often referred to as a BSP.

22.3. Licensing

The issue of licensing with Linux is a confusing one, replete with different standards and
different acronyms. Remembering the GNU Project mentioned in Section 22.1, we recall
that the basis for the project was the creation of an OS that was ‘free’. In order to release free
software, a free licence must be utilised. For GNU, the tools for which spawned Linux, the
GNU General Public Licence (GNU GPL) is typically used. Other free licences exist (and

USER APPLICATIONS

SYSTEM CALL INTERFACE

KERNEL

ARCHITECTURE-DEPENDENT CODE

GNU C LIBRARY

K
E
R
N
E
L

S
P
A
C
E

U
S
E
R

S
P
A
C
E

HARDWARE DEVICES

Figure 22.1: A High-level GNU/Linux system architecture
387

CHAPTER 22: Linux: An Overview
in different versions), compatible with GPL such as the GNU Lesser GPL (LGPL), the
GNU Affero GPL (AGPL), the GNU All-Permissive licence, Modified BSD licence, Apache
licence, Intel Open Source licence, Mozilla Public licence (MPL)...the list goes on[4]!

The choice of licence used depends upon the needs of the developer, as the rules and
clauses accompanying each will vary, so it is important to research which licence is best
suited to the software being developed.

Clearly, with such an expansive list of available licences, to go into detail regarding each
could fill a whole book! Instead, a flavour of the licensing terms these various options
provide will be given by taking a look at the GNU GPL in particular.

22.3.1. GNU General Public licence

The GNU GPL is what is known as a copyleft licence. A play on the word copyright, this
refers to the practice of using copyright law in the distribution of software and its modifica-
tions but with each modification retaining the same rights. This therefore ensures a
program is free[5]. The following details just some of the regulations regarding GPL[6]:

• When a piece of software is released under the GNU GPL as free software, all subse-
quent updates or modifications must also be released as free software.

• Modifications can be made without publishing if they are for private use, including
that of organisations and companies using modified code internally, however, if it is
released publicly in any way the source code must also be made available.

• Since ‘free’ does not refer to ‘free as in free beer’, GPL still allows developers to charge
for their software.

• However, once someone pays the fee on a piece of GPL’d software, they are then
permitted to redistribute it with or without fees.

• All copies of software under GPL must carry appropriate copyright notices giving
credit to authors where due. A copy of the GPL must accompany every copy of the
program in question to ensure everyone knows their rights.

• Licences compatible with GPL allow code under such a licence to be included as part
of a larger program covered by GPL. If a program features code under a non-
compatible licence it is no longer considered fully free.

But what does this mean for the average developer? Well, a developer wishing to publish
their program to a wider audience must take into account existing licences for any original
or modified code they have included, and release it under a suitable licence that adheres to
388

CHAPTER 22: Linux: An Overview
all the pre-existing terms. Put simply, it is advisable to read the terms of any licences
relevant to a piece of code or its constituent parts to ensure the published program doesn’t
violate the terms of its licence.

The GNU Operating System homepage discusses the GPL (and other free licences) in
detail and in fact you can download a full copy for yourself to read and gain a full under-
standing of what this means for a developer:

http://www.gnu.org/licences/gpl.html

22.4. Development Tools and Resources

22.4.1. Virtual Machines

Those lacking a machine running a Linux distribution but wishing to develop for Linux
have the option of using a Virtual Machine (VM). This is a software implementation of an
OS, emulated within the existing primary OS of a target machine provided it has enough
processing power and memory.

There are many VM options available, at different price points and offering different
features, to tailor to anyone from the casual user to more advanced solutions for enterprise.
Table 22.1 highlights a few of these options and their relative advantages and disadvantages.
A developer wishing to use a VM for the sole purpose of developing applications for Linux
may find one of the free options more than suitable for their needs. Someone wishing to
deploy a Linux based VM in a business scenario, however, may be required to look at paid
alternatives.

Table 22.1: Comparison of VMs.

Virtual
Machine Free/Paid licence Advantages Disadvantages

Virtual Box Free Proprietary/
GPL

Multicore support.
Features a GUI.
Supports USB.
Supports snapshots.
Support for
Direct3D and
OpenGL.

Cannot emulate
other architec-
tures.
389

http://www.gnu.org/licenses/gpl.html

CHAPTER 22: Linux: An Overview
VMware
Worksta-
tion

Paid Proprietary Multicore support.
Features a GUI.
Supports USB.
Supports snapshots.
Support for DirectX
9 and OpenGL.

Cannot emulate
other architec-
tures.

VMware
Player

Free (per-
sonal use)

Proprietary Multicore support.
Features a GUI.
Supports USB.
3D Acceleration
with VMGL.

Less features than
paid version
(Workstation).
No snapshot sup-
port.

KVM Free GPL Emulates multiple
architectures (ARM,
MIPS, SPARC).
Supports USB.

No proprietary
GUI (third party
alternatives avail-
able).

XEN Free GPL Features a GUI.
3D Acceleration
with VMGL.

No USB Support.
No snapshot sup-
port.

Windows
Virtual PC

Free Proprietary Features a GUI.
Supports snapshots.

No multicore sup-
port.
Linux support is
unofficial/lacking
some features.
Cannot emulate
other architec-
tures.
Partial USB sup-
port.
No 3D Accelera-
tion support.

Table 22.1: Comparison of VMs.

Virtual
Machine Free/Paid licence Advantages Disadvantages
390

CHAPTER 22: Linux: An Overview
22.4.2. Version Control

The collaborative nature of development for Linux necessitates the utilisation of some
form of version control. Let us consider a rather contrived scenario in which an argument
for version control is presented. Suppose you have invested several hours coding a particu-
larly impressive application to run on a Zynq development platform. You’ve programmed
the FPGA, downloaded the application to the processor and run it and everything
functions as expected! With a spring in your step, you head to the kitchen to make a
celebratory cup of coffee and grab a piece of cake. As the coffee brews, you discuss your
success with a colleague, who has an idea on how you could improve the functionality of
the system. Being a trusting person, you give them the all clear to implement the improve-
ments. You come back to the project some time later, and sure enough it no longer works,
the ‘helpful’ colleague is nowhere to be seen and your code is a mess! The only option is to
try and remember what you had before and invest even more time in correcting things.

Utilising some form of version control is a way to prevent just this kind of disaster. There
are three main types of version control that you could utilise. The first is simply making a
local backup of all your work at regular intervals. This is highly susceptible to human error,
and things can become rather confusing when you have many versions of many different
files, created by many different colleagues, stored across many different directories.
Maintaining a database of changes would help with this, but there exists a more elegant
solution.

Centralised Version Control Systems (CVCSs) utilise a single server that hosts all
versioned files. Every user can login to the server and check-out a local copy of the file for
editing. When they are finished, they can commit any edits and the server maintains a
record of who authored which version of which file and when. However, suppose the basic
example of a case where regular full backups of the server have not been made and the hard
disk is corrupted; the entire project is lost beyond repair. A Distributed Version Control
System (DVCS) mitigates this. Instead of checking-out a single file, each user mirrors the
entire repository on the server allowing for recovery of the entire repository should
something go wrong[7]. The metadata utilised in DVCSs also facilitates operations such as
merges. A DVCS is also of use on collaborative projects where progress is being made by
more than one developer on a regular basis. If you want to utilise a colleague’s latest
advancements in unison with your own development you can simply take the latest
snapshot on the server and continue working,
391

CHAPTER 22: Linux: An Overview
22.4.3. Git

Git is one such DVCS, designed by Linus Torvalds for the initial purpose of managing
Linux kernel development. It was released in 2005 as a free alternative to a previous,
proprietary Version Control System (VCS) that ceased to provide free use.

Similar in deployment to a DVCS, Git has one significant difference. A DVCS ‘thinks’ of
the project as a set of original files and tracks the changes made to them over time. Git,
however, takes a snapshot of all files at each commit which it then stores and references as
required. To avoid redundancy, unchanged files are not re-stored and a link back is made to
the previous file saved. This is visualised in Figure 22.2, where each version represents a
snapshot of the project at that time.

There are three main states in which any file can exist; these are referred to as committed,
modified, and staged. A file is first modified in the working directory, then staged, marking
it for the next snapshot to commit to the repository. This sequence of events is visualised in
Figure 22.3. The working directory contains a checkout of a single version of the project for
local modification. The staging area is really just file indexing of what will be entered into
repository on the next commit. The repository is a store of the object database and
metadata for the project.

Git operations occur locally, rather than on a remote server as with CVCS, mitigating
any network latency. Any information regarding version history can be gleaned locally
rather than through pulling information on older versions from the remote server. This

A
0

B
0

C
0

VER
0

A
1

B
1

C
1

VER
1

A
2

B
2

C
2

VER
2

A
3

B
3

C
3

VER
3

Commits with time

Link back

Figure 22.2: Exemplary Git version history
392

CHAPTER 22: Linux: An Overview
also facilitates offline use when a connection to the repository may not be available, as
commits can be made offline and uploaded when a connection is available.

Finally, since modification of a project within Git is generally considered an additive
procedure to the database, it is considerably difficult to modify a project beyond the
bounds of being recovered.For these reasons, Git is the preferred method of version control
for Linux development[8].

22.4.4. Debugging Linux

Code, at some iteration of its development, will likely contain bugs; this is a statement
that holds true for all application development, and Linux is no exception. Despite our best
attempts to create perfect, logical code, often certain arguments will return an unexpected
outcome, a subroutine may not receive the correct parameters, or something even stranger
may occur due to a bug. In Linux, several tools are at our disposal to identify the nature and
location of any bugs.

Problems with memory allocation are a common cause of program crashes; these could
include memory leaks, where memory is never released with the appropriate calls, or buffer
overruns, where writing occurs beyond the allocated memory. Examples of memory
debugging tools include MEMWATCH and Yet Another Malloc Debugger (YAMD)[9].

Often, a program in the user-space can trigger a system call which can cause unexpected
behaviour. One tool used for debugging such errors is strace, which monitors all the

WORKING DIRECTORY

STAGING AREA

REPOSITORY

c
h
e
c
k
o
u
t

c
o
m
m
it

s
ta
g
e

Figure 22.3: Operational stages of Git
393

CHAPTER 22: Linux: An Overview
arguments to a particular call and its corresponding return value directly from the kernel
to identify which call is at fault. If the return value is unexpected for the given arguments it
can be deduced there is a problem with the function being called[9].

Tools are also available for bugs originating in the Linux kernel itself. The GNU debugger
(gdb) is provided in the user-space in the form of a command line tool or GUI with the
purpose of seeking out bugs in user-space programs, or for use in the kernel as the remote
host Linux kernel debugger through gdb (kgdb). Other tools are provided in the kernel for
sourcing these bugs, such as Oops[9]. Table 22.2 provides details of some of the availabile
debugging tools.

Table 22.2: Linux debugging tools.

Source of
Bug

Examples of
Debugging

Tools
Notes

Memory
Allocation

MEM-
WATCH

Memory error detection tool in C.
Added to the program as a header file.
Tracks memory leaks/corruptions.
Provides a results log.

YAMD Locates problems with dynamic memory allocation
in C/C++.
An external tool that must be installed and run for a
file under test.
Provides a detailed analysis of code to ascertain mem-
ory leaks etc.

System Calls strace Command line tool.
Details system calls issued by user-space programs
including arguments to said calls and the return val-
ues.
Information is taken directly from the kernel and
requires no modifications to the kernel.
394

CHAPTER 22: Linux: An Overview
There of course exists many other debugging tools available for getting to the root of a
bug in a program, and the suggestions above are merely an introduction to the types of bug
you may encounter and the debugging options available.

22.5. Chapter Review

An overview of a generalised Linux architecture has been presented, as well as a
discussion of some of the issues surrounding Linux development, including licensing and
development tools. As such the following chapters will focus on the key components of the
kernel individually. Chapter 23 will delve deeper into the Linux kernel including the file
system and drivers. Following this, we will discuss the Linux boot procedure.

Kernel gdb Command line/graphical tool provided by the Free
Software Foundation.
Debugs user-space programs and the Linux kernel
itself.
When using gbd, the program to be debugged is run
and details are provided about program termination.

kgdb Debugs the Linux kernel using gbd.
Requires a development machine and a test machine
connected via serial ports.
Provided as an extension of the kernel allowing con-
nection to a remote machine running the same exten-
sion during boot.
This allows the setting of break points and data exam-
ination of the remote kernel.

Oops A message containing details of system failures sent
to system console upon a crash.
Message is sent to ksymoops utility to convert code to
instructions and map stack values to kernel symbols
to provide a meaningful reasoning for the cause of the
failure.

Table 22.2: Linux debugging tools.

Source of
Bug

Examples of
Debugging

Tools
Notes
395

CHAPTER 22: Linux: An Overview
22.6. References

Note: All URLs last accessed June 2014.

[1] GNU Operating System, “Overview of the GNU System”, webpage
Available: http://www.gnu.org/gnu/gnu-history.html

[2] IDC white paper, “The Opportunity for Linux in a New Economy”, April 2009
Available: http://www.linuxfoundation.org/sites/main/files/publications/Linux_in_New_Economy.pdf

[3] L. Wirzenius, J. Oja, S. Stafford and A. Weeks, “Overview of a Linux System — Important Parts of the
Kernel” in The Linux System Administrators Guide, v0.9
Available: http://www.tldp.org/LDP/sag/html/overview.html

[4] GNU Operating System, “Various GNU licences and Comments about Them”, webpage
Available: http://www.gnu.org/licences/licence-list.html#Softwarelicences

[5] GNU Operating System, “What is Copyleft?”, webpage
Available: https://www.gnu.org/copyleft/

[6] GNU Operating System, “Frequently Asked Questions about the GNU licences”, webpage
Available: http://www.gnu.org/licences/gpl-faq.html

[7] Scott Chacon, “Getting Started — About Version Control” in Pro Git,
Available: http://git-scm.com/book/en/Getting-Started-About-Version-Control

[8] Scott Chacon, “Getting Started — Git Basics” in Pro Git,
Available: http://git-scm.com/book/en/Getting-Started-Git-Basics

[9] IBM Developer Works, “Debugging Tools and Techniques for Linux on Power”, 02 October 2013
Available: http://www.ibm.com/developerworks/systems/library/es-debug/index.html?ca=drs
396

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

23

The Linux Kernel

he previous chapter introduced the concept of the Linux kernel, and this chapter
seeks to elaborate on this key part of the Linux operating system. The hierarchy of the
kernel itself will be examined, with discussion of some of its main aspects: memory
management, process management, and the file system.

23.1. Linux Kernel Hierarchy

Until now the Linux kernel has been presented as a mysterious but crucial part of a
Linux based system. We will now investigate the kernel further and take a look at some of
the core operations it is responsible for.

A kernel is effectively the core of an operating system. It is the part of the operating
system that is first to load on boot, and therefore resides in main memory.

Figure 23.1 is similar to Figure 22.1 from the previous chapter, except the kernel has
been expanded to show some of the most important components. In reality, if you were to
search for a Linux kernel ‘map’ you would be presented with a complex web of many
different components and paths, but this is beyond the scope of this book.

T

397

CHAPTER 23: The Linux Kernel
23.2. System Call Interface

A system call is an interaction between an application in the user space and the required
service provided by the kernel. The SCI provides this link between the boundary of the
user space and kernel space, where direct calls are not possible. The implementation of a

USER APPLICATIONS

SYSTEM CALL INTERFACE

GNU C LIBRARY

K
E
R
N
E
L

S
P
A
C
E

U
S
E
R

S
P
A
C
E

HARDWARE DEVICES

Memory

Management

Process

Management

Virtual

File System (VFS)

Management

BSD Socket Library

File System

Drivers

Device A

Driver

Device B

Driver

Protocol Drivers

Device C

Driver

Figure 23.1: Important components of the Linux kernel
398

CHAPTER 23: The Linux Kernel
Linux system call can vary depending on the processor architecture. Figure 23.2 represents
one such simplified approach based on processor interrupts[1].

• All system calls are multiplexed through a single kernel entry point, identifiable by a
register as specified in and loaded from the C library.

• A software interrupt is triggered and the interrupt handler executes the system_call
function.

• The identifying register indexes the system_call_table to trigger the correct system
call via the SCI.

• Returning from the system call, there is a transition back to the user space where
execution continues in the C library and original user application.

System calls therefore provide a level of abstraction between the programs in the user-
space and the kernel itself. This also gives greater consistency to the interactions between
all user applications and the kernel code.

USER APPLICATIONS

SYSTEM CALL INTERFACE

GNU C LIBRARY

K
E
R
N
E
L

S
P
A
C
E

U
S
E
R

S
P
A
C
E

transition to kernel

resume userspace

Figure 23.2: Simplified interrupt based system call
399

CHAPTER 23: The Linux Kernel
23.3. Memory Management

Despite the rapid advancements in memory technology used in computing systems, the
software used is always hot on its heels in terms of memory requirements. The truth is that
there is a need for more memory than the finite amount available. Virtual memory can help
with this problem, making it appear as though there is more memory available in the
system than there actually is.

23.3.1. Virtual Memory

Figure 23.3 represents a simplified visualisation of virtual memory. Two processes,
Process A and Process B, each have their own virtual address space and page table. A page
is simply a segment of memory, given a unique Page Frame Number (PFN). The page
tables therefore contain mapping information allowing the processor to resolve virtual

P
R
O
C
E
S
S

A

P
R
O
C
E
S
S

B

Physical

Memory

Virtual

Memory

PFN0

PFN1

PFN2

PFN3

PFN4

PFN5

PFN6

PFN0

PFN1

PFN2

PFN3

PFN4

PFN5

PFN6

PFN0

PFN1

PFN2

PFN3

PFN4

Page

Tables

Page

Tables

Figure 23.3: Simplfied representation of virtual memory[2]
400

CHAPTER 23: The Linux Kernel
memory addresses into physical ones. Note that Process A has virtual PFN1 mapped to
physical PFN3. In order to translate this virtual PFN1 into physical PFN3 the processor will
use an offset within the virtual page as an index to the page table. If the entry at that offset
is valid, a physical PFN is retrieved. If not and the process is trying to access non-existent
regions of memory then the address cannot be resolved and the operating system is
notified of a page fault to be dealt with.

This subsystem for memory management offers a number of features; referring to Figure
23.3 once more, it can be observed that a virtual PFN does not have to match the physical
PFN it is mapped to, and in fact several virtual PFNs from different processes can be
mapped to the same physical PFN, as is observed with entries from both Process A and B
mapped to PFN3 in physical memory. This allows the system to operate with a large
address space, where the system appears to have more memory than is physically present.
Virtual address spaces are independent for each process and so are offered a level of
protection through separation, preventing code or data from undesired overwrites. A
further benefit of this approach is that all running processes in a system receive a fair share
of the physical memory available [2].

23.3.2. High and Low Memory

Historically, 32-bit Linux systems have only been able to support 4GB of memory due to
32 bits providing a kernel virtual address range of 0xC0000000 to 0xFFFFFFFF. The default
mapping of this 4GB is with the 3GB in the upper address space given to the user space
with the remaining 1GB beginning at 0xC0000000 set aside for the kernel code itself (in
actuality this is slightly less than 4GB due to the presence of I/O).

To mitigate this, the Linux kernel now divides the virtual address space into two regions
known as low and high memory. Low memory refers to the memory for which logical
addresses exist in the kernel space. High memory, on the other hand, refers to memory for
which logical addresses do not exist as it lies beyond the address range defined for kernel
virtual addresses. Special page tables are required to map high memory into the kernel’s
address space; this can be an expensive operation with a limit on the number of high-
memory pages mapped at any time. For this reason the core of the kernel is kept in low
memory, while high memory can be used for some kernel tasks and process pages only[3].

23.4. Process Management

As with any other operating system, tasks to be carried out are performed by processes.
Consider the fact that any program on an operating system is actually just some instruc-
401

CHAPTER 23: The Linux Kernel
tions, in the format of machine code, stored as an executable image; a process is therefore
such a computer program in operation.

• As machine code instructions are executed by the system’s processor, processes
change and as such are dynamic.

• Linux is a multiprocessing OS, and each process has its own rights and responsibil-
ities, meaning a crash of one process will not impact the other processes.

• Processes use both a variety of system resources from the CPU for running instruc-
tions and physical memory for holding the process and any corresponding data.

23.4.1. Process Representation

In Linux, a structure known as task_struct is used to represent a process. Within this
structure is all the data required to represent that process as well as other a large amount of
additional data used in associating the process with any parent/child processes. Some of the
information relating to the process contained within task_struct is as follows[4]:

• Process state of execution — running, sleeping, sleeping but not interruptible,
stopped, etc.

• Flags — process creation, exiting, memory allocation.

• Process priority — a lower value priority equates to higher process priority. This is
dynamic and based on several factors.

• Process address space.

23.4.2. Process Creation, Scheduling and Destruction

Processes are created in the user space, either through execution of a program (which
creates an entirely new process), or within that program itself using the fork system call
(creating a child process). Each process has its own process identifier (PID) which is
basically a number used to uniquely identify each process in the system. These numbers do
not change throughout the life of the process, but upon process termination its PID is
released for use with a new process. The process is passed back and forward between
several different functions, including[4]:

• copy_process — creates a new process as a copy of the parent, consults the Linux
Security Model to ensure it has permission to create new tasks, and initialises the
task_struct
402

CHAPTER 23: The Linux Kernel
• dup_task_struct — allocates a new task_struct for the process and copies process
descriptors to this structure.

• wake_up_new_task — initialises scheduler information and places the created
process in a run queue

The Linux process scheduler is responsible for managing the various processes existing
in the system based on their priority. It holds a list of all processes identified by their corre-
sponding task_struct at each priority level. The schedule function selects the most appro-
priate process to run based on execution history and loading.

Several different events can initialise process destruction: normal process termination at
the end of a run, termination through transmission of a special signal, or via the exit system
call. All of the aforementioned methods produce a call to the kernel function do_exit,
which eradicates all references to the current process from the OS. The process to be exited
is indicated via the PF_EXITING flag, at which point a series of calls detaches the process
from any resources used during its life. The exit_notify call provides a notification before
the process state is altered to PF_DEAD, allowing the scheduler to select the next process
for execution[4].

Figure 23.4: Process creation flow through fork system call

fork

K
E
R
N
E
L

S
P
A
C
E

U
S
E
R

S
P
A
C
E

dup_task_struct

copy_process

wake_up_new_task
403

CHAPTER 23: The Linux Kernel
23.5. File System

23.5.1. Linux File Systems

Linux is incredibly versatile in that it is capable of supporting a large number of different
file systems including, but not limited to:

Linux File Systems

ext proc

ext2 smb

xia ncp

minix iso9660

umsdos sysvs

msdos hpfs

vfat affs

ufs

exit
K
E
R
N
E
L

S
P
A
C
E

U
S
E
R

S
P
A
C
E

do_exit

termination

signals
sys_exit

Figure 23.5: Operation of process destruction

Table 23.1: Some supported Linux file systems
404

CHAPTER 23: The Linux Kernel
The numerous file systems are collated in a hierarchical tree structure and viewed by the
system as a single file system entity. New file systems are mounted (that is, a file system is
associated with a storage device in Linux) to this tree as they are added to the system[5].

23.5.2. Virtual File System

Referring back to Figure 23.1, the Virtual File System (VFS) plays a key role in facili-
tating the inclusion of the many file systems. It provides a level of abstraction, creating a
unified interface between the individual file systems and the rest of the kernel. It is the root
level of the file-system interface and is responsible for tracking all currently-supported and
mounted file systems. Figure 23.6 represents the interactions between the VFS and the real
file systems (in this instance we are only demonstrating the vfat and ext2 file systems).

The buffer cache is used as a common data buffer from the hardware devices, speeding
up file system access to the physical devices holding the file systems. It is independent of
the file systems and as such keeps these file systems independent from the supporting
device drivers and media.

During the navigation of mounted file systems inodes are continuously read or written,
so the VFS maintains an inode cache to speed up access to the mounted file systems. (Note
— inode stands for index node and is a data structure found within Unix file systems,
containing all the information about a file system object).

The VFS also maintains a cache of directory entries to speed up access to those most
commonly in use. When a directory is looked up by a file system, its details are added to
the cache and can be accessed more quickly the next time the same directory is looked up.
The VFS uses a form of Least Recently Used (LRU) retention of cache entries. As a
directory entry is added to the cache, those used previously are moved down a level. When
the cache is full, the entry at the lowest level will be discarded as the next entry is added[5].
405

CHAPTER 23: The Linux Kernel
23.6. Architecture-Dependent Code

The lowest layer of the Linux kernel stack is the architecture-dependent code. The Linux
kernel supports a great variety of different hardware platforms, and so some platform
specific code is required for each to work in unison with the more ‘generic’ architecture-
independent code. This is commonly known as a BSP and includes source files for the
architecture families and processors, common boot support files, DMA hardware inter-
faces, interrupt handling and other items relevant to a specific processor family[6]. When
working through the associated ZedBoard-based tutorials you will notice that an
important step in the design is building an appropriate BSP for the Zynq that allows the
processor to communicate with the development board.

23.7. Linux Device Drivers

A Linux device driver, as in any OS, can be considered as a ‘black box’ that provides a
level of abstraction between the hardware devices in a system and the programs running in
the OS. By utilising device drivers, a standardised set of calls can be implemented across all
programs which are independent of the specific device; these calls correspond to driver-

VFS
Inode

Cache

Directory

Cache

vfat ext2

Buffer

Cache

Disk

Drivers

Figure 23.6: Linux virtual file system interactions[5]
406

CHAPTER 23: The Linux Kernel
specific functions that carry out the required operations. The result is a modular approach
allowing the ability to build drivers outside the kernel and add them in as required[7].

23.7.1. A Note on Mechanisms Vs. Policies

An important distinction to make about device drivers is that they provide mechanisms
and not a policy [7].

• A mechanism dictates what the code in question is capable of doing. A device driver
therefore dictates the capabilities of a piece of hardware through the code contained
within.

• Policies are defined at higher levels of the system and concern how these mecha-
nisms should be used.

Ensuring that drivers are policy free gives flexibility, meaning the corresponding
hardware is available to all users requiring it, regardless of their particular needs for the
piece of hardware.

23.7.2. Module/Device Classification

In Linux, a module is a piece of code that is added to the kernel at runtime, a concept
that will be clarified in the next chapter. Device drivers fall into this category, and file
system types also exist as modules within the kernel.

Device drivers can exist as one of three fundamental types. These are[7]:

• character devices — devices that are accessed by a stream of bytes, such as a file. A
driver responsible for such a device would perform open/close and read/write
system calls.

• block devices — devices capable of hosting a filesystem, such as a hard disk. Linux
allows the block device to act like a character device, reading and writing any
number of bytes unlike traditional Unix systems which can only read/write in blocks
of 512 bytes or more. The block devices differ from character devices in the way the
kernel itself manages the data and hence have a different interface.

• network interfaces — devices concerning the transmission of packets of data through
a network interface. Network drivers do not know about the connections regarding a
transmission and instead only deal with the packets transmitted.
407

CHAPTER 23: The Linux Kernel
23.8. Chapter Review

This chapter has provided a high-level overview of some of the fundamental compo-
nents of the Linux kernel. The system call interface was shown as a means of abstracting
the user-level of a Linux system from the kernel. Within the kernel itself, memory and
process management, the file system, and device drivers were discussed.

23.9. References

Note: All URLs last accessed June 2014.

[1] IBM Developer Works, “Anatomy of the Linux File System”, 30 October 2007
Available: http://www.ibm.com/developerworks/linux/library/l-linux-filesystem/

[2] David A. Rusling, “Memory Management” in The Linux Kernel, v1.0
Available: http://www.tldp.org/LDP/tlk/mm/memory.html

[3] J. Corbet, G. Kroah-Hartman and A. Rubini, “Memory Mapping and DMA” in
Linux Device Drivers, 3rd Edition, O’Reilly, 2005, pp 412-463

[4] IBM Developer Works, “Anatomy of Linux Process Management”, 20 December 2008
Available: http://www.ibm.com/developerworks/library/l-linux-process-management/

[5] David A. Rusling “The File System” in The Linux Kernel, v1.0
Available: http://tldp.org/LDP/tlk/fs/filesystem.html

[6] M. Tim Jones, “2. GNU/Linux Architecture” in GNU/Linux Applications Programming,
Cengage Learning, 2005, p17

[7] J. Corbet, G. Kroah-Hartman and A. Rubini, “An Introduction to Device Drivers” in
Linux Device Drivers, 3rd Edition, O’Reilly, 2005, pp 1-14
408

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

24

Linux Booting

ow that the Linux kernel has been introduced it is worth taking the time to consider
the Linux boot process; the sequence of events that goes on behind the scenes when a
Linux computer or embedded system is powered on. We will start with a high-level
overview of the boot process of a Linux desktop computer ahead of covering the various
individual stages. Next, we will look at how the boot process of an embedded Linux device
differs from that of a Desktop variation by considering the Linux boot process specific to
Zynq.

24.1. Overview

The first thing that happens when a Linux system is powered on, or reset, is that the
processor will execute code in a predetermined location. For a desktop computer this
location is stored in a section of flash memory on the motherboard, known as the Basic
Input/Output System (BIOS). As modern day PCs offer such versatility in the range of boot
devices, the first thing that the BIOS will do is determine which devices offer bootable
options [1].

Once the boot device has been determined, the FSBL is loaded into RAM and executed
by the processor. The FSBL is a very small section of code — — less than 512 bytes, or a
single sector — and its sole purpose is to load the Second-Stage Bootloader (SSBL) into
RAM.

The SSBLis the stage in the boot process where a boot menu is presented; if you have
used Linux before you may have noticed this. This menu presents a list of possible boot

N

409

CHAPTER 24: Linux Booting
options that are available. When a boot option from the list is chosen, the bootloader will
load the corresponding OS, which will then decompress and load itself into memory before
initialising the kernel. There are other functions that are carried out by the bootloader
before the kernel is launched, but we will get to that later.

With the required kernel modules successfully launched, the final stage of the boot
process is to invoke the first user-space function, init. This function initialises all high-level
parts of the system.

This concludes the high-level overview of the Linux boot process. In the next section we
will break down the boot process into its consecutive parts and take a look at each of them
in greater detail.

System Startup

First-Stage Bootloader

Second-Stage Bootloader

Kernel

Init

BIOS

Master Boot Record

GRUB / LILO

Linux

User-Space

Operational

Reset or
Power-on

Figure 24.1: Stages of the desktop Linux boot process
410

CHAPTER 24: Linux Booting
24.2. Stages of the Desktop Linux Boot Process

24.2.1. BIOS

The BIOS is responsible for the initial system startup and locating the available bootable
devices. When the system is powered on the processor will begin execution of the BIOS,
which is split into two parts - the Power-On Self Test (POST) and runtime services.

The first operation carried out by the BIOS is dependent on whether the system was
powered on (cold boot) or reset (warm boot). If the system has been powered on, the first
operation is the initialisation and testing of the basic system hardware components - a
process known as the POST [1]. Once all hardware devices have been initialised and
verified, the POST function is flushed from memory. If, however, the system has been reset
a special flag is raised in memory and the BIOS will not carry out the POST in order to save
time.

Once the POST has been flushed from memory, the BIOS will advance to runtime
services. This function searches for bootable devices that are available to the system; the
devices must also be active to be found. The order in which the devices are located is
defined in the Complementary Metal Oxide Semiconductor (CMOS) settings. Typically
the Linux boot device is a hard disk; it can, however, be anything from a floppy disk,
network device, USB memory or CD-ROM.

When booting Linux from a hard disk, the Master Boot Record (MBR), a 512 byte sector
located in the first sector of the device, contains the primary bootloader. The last task
carried out by the BIOS is the loading of the MBR into memory. Once loaded, the BIOS
relinquishes control [1].

24.2.2. First-Stage Bootloader (FSBL)

The FSBL is a section of code contained in the MBR. The remainder of the MBR is a
partition table and a validation signature. The largest section of the MBR (446 bytes) is
known as the primary bootloader and contains executable code and error messages [1].
The partition table is contained in the next 64 bytes, which itself contains records of four
primary partitions, of 16 bytes each. The final section of the MBR is a 2 byte boot signature
— 0xAA55 — for validating the MBR. The structure of the MBR is provided in Figure
24.2.
411

CHAPTER 24: Linux Booting

The primary bootloader’s job is to locate, and then load, the SSBL by searching the
partition table for an active partition. Once an active partition is located, all further parti-
tions are scanned to ensure that they are inactive. The boot record from the active partition
is then loaded into memory for execution.

24.2.3. Second-Stage Bootloader (SSBL)

The SSBL will present you with a list of operating systems that are available to be booted
by the system. Once the desired operating system has been selected, the kernel image is

0x000

0x1BD

0x1FD
0x1FF

446 bytes

64 bytes

Bootloader

Partition Table

Signature

512

bytes

2 bytes

Figure 24.2: Structure of the Master Boot Record (MBR)
412

CHAPTER 24: Linux Booting
decompressed and loaded into memory before the control of the processor is passed to the
OS [4].

Two main bootloaders exist: Linux Loader (LILO) and Grand Unified Bootloader
(GRUB). Both LILO and GRUB are made up of the combination of both the FSBL and
SSBL. LILO has been around for long time and has, in most cases, been replaced with
GRUB. While LILO requires that the kernel files be stored on raw disk sectors, GRUB is
able to load kernels from ext2 or ext3 file systems [1]. GRUB is able to do this by adding an
extra step to the bootloader process, between the first- and second-stages, which allows it
to understand a specific file system.

Other methods of booting a Linux kernel exist, such as Syslinux or Loadlin which allow
you to load Linux from, and replace, the currently running Windows/DOS environment.

24.2.4. Kernel

With control of the CPU handed over by the second-stage bootloader, a routine will run
to perform a small amount of hardware setup before decompressing the kernel image.
Once decompressed, the kernel image will be transferred to high memory - the part of
physical memory not mapped directly by the kernel page tables. If a RAM disk image is
present this will also be moved into memory and marked for later use [1]. At this point the
kernel will be called for the first time and will boot.

During the kernel boot further hardware setup is carried out, including setting up the
stack, configuring the page tables, enabling memory paging and the detection of the CPU
and FPU type [1].

24.2.5. Init

The final stage of the Linux boot process is the initialisation of init - the first user-space
application. Once invoked, init looks for the file /etc/inittab and determines whether it has
an entry of the type initdefault, which details the initial runlevel of the Linux system. The
various Linux distributions will have different configurations for the runlevels of the
system. Taking the Linux standard base specification as an example, there are 7 runlevels,
as detailed in Table 24.1 [3].

Init is the first program to be invoked that has been compiled with the standard C
library. No standard C applications will have been executed prior to this point [1].
413

CHAPTER 24: Linux Booting

24.3. Booting Zynq

Now that we have looked at the traditional Linux boot process, we shall now focus on
the changes that are introduced when booting Linux on a Zynq device. There are a number
of key areas in which the embedded Linux boot process varies from that of a desktop distri-
bution. We will start by taking a high-level look at the overall Zynq boot process, before
taking a closer look at some of the individual stages.

Zynq devices boot over a number of stages, starting with the boot ROM which is
initialised at power-on. The value of the boot mode strapping pins of the device determines
the boot mode [5]. The boot mode defines from which of the supported interfaces —
JTAG, NAND Flash, NOR Flash, QSPI Flash or SD card — the FSBL will be loaded from
[2]. Once the boot mode has been determined, the boot ROM will read the boot header,
and given the configuration parameters, will authenticate the image and load the FSBL
image from the specified interface to the OCM. Once the image is transferred to the OCM,
the control of the CPU is handed over to the FSBL.

Table 24.1: Default runlevels for Linux Standard Base [3]

ID Name Details

0 Halt Shuts down the system.

1 Single-user mode Allows text mode access to a single
user for administration purposes.

2 Multi-user mode without net-
working

Normal text mode operation allow-
ing multiple users to access the sys-
tem. All daemons run except
Network File System (NFS).

3 Multi-user mode with network-
ing

Same as runlevel 2 except with NFS
enabled.

4 Reserved for local user N/A.

5 Multi-user with a display man-
ager

Full multi-user operation with the
addition of graphical mode.

6 Reboot Shuts down the system to runlevel 0
and reboots.
414

CHAPTER 24: Linux Booting
Typically, the FSBL contains instructions for the CPU to further configure the PS using
reads/writes, and to configure the PL using the DevC [5]. The Advanced Encryption
Standard (AES) and Hash-based Message Authentication Code (HMAC) are used by the
DevC to allow decryption of the FSBL and the PL bitstream, which are accessed via the
DevC and the Processor Configuration Access Port (PCAP) [5].

The individual stages of the Zynq Linux boot process are detailed in Table 24.2 and
visualised in Figure 24.3.

Before we take a brief look at the individual Zynq boot stages in greater detail, it would
be useful to first introduce the files that are required to boot Linux on a Zynq device. This
will hopefully make things clearer for when they are mentioned later on in the section.

Table 24.2: Stages of the Zynq Linux boot process [5]

Stage Description

Stage-0 On power-on reset, system reset or software reset, a hard-
coded boot ROM is executed on the primary processor.

Stage-1 Typically this is the FSBL. It can, however, be any user-
controlled code.

Stage-2 Typically this is the user design that will run on the process-
ing system. It could also be the second-stage bootloader, and
is completely within user control.

Boot ROM

stage-0

Hard-Wired

Boot ROM

First-Stage Boot

stage-1

On-Chip Memory

(OCM)

Loader (FSBL)
Second-Stage Boot

stage-2

DDR Memory

Loader (SSBL)
Linux Kernel

DDR Memory

Figure 24.3: Zynq Linux boot process
415

CHAPTER 24: Linux Booting
24.3.1. Zynq Boot Files

In order to boot Linux on a Zynq-7000 AP device, you need to have four files present on
your boot medium:

1. BOOT.BIN

2. zImage

3. devicetree.dtb

4. ramdisk8M.image.gz

The first of these files, BOOT.BIN, is the zynq boot image file. It is actually the combina-
tion of 2 compulsory files, the FSBL and SSBL executable and linkable format (.elf) files,
and an optional bitstream (.bit) file. The FSBL and SSBL files, as their name suggests, con-
tain the final stages of the bootloader which is uses to load Linux on the device. The bit-
stream is the file that is used to configure the programmable logic of the Zynq-7000 AP
device.

The ordering of the files that are stitched together to form the boot image is important;
the optional bitstream file, if required, must be placed after the FSBL file and before the
SSBL file.

The required ordering of the boot image file is shown in Figure 24.4.

The zImage file contains the compressed Linux kernel. It will decompress itself once
loaded into memory by the SSBL.

Information of the hardware that Linux is to be booted on is contained in the device tree
blob (.dtb) file. The device tree is defined in human-readable text file, called the device tree

Bitstream (.bit)

SSBL (.elf)

FSBL (.elf) (Compulsory)

(Compulsory)

(Optional)

BOOT.BIN

Figure 24.4: Order of boot image files
416

CHAPTER 24: Linux Booting
source (.dts) file, and is then compiled into the binary form by the compiler to form the
device tree blob which can be understood by U-Boot.

The final file, ramdisk8M.image.gz, is a RAM disk image that, when loaded into
memory, will allow a portion of RAM to be used as if it were a disk drive. This creates a
temporary disk drive in the RAM which the Linux system can use as a file system to mount
the root directory.

The overall content of the Zynq Linux boot medium is shown in Figure 24.5.

We will now take a more detailed look at the individual stages of the Zynq boot process.

24.3.2. Stage-0 (Boot ROM)

The function of the boot ROM is to load the stage-1 boot image. The location of the
stage-1 boot image is determined at power on/reset by sampling the BOOT_MODE
signals, which are applied to specific pins in the form of a weak pull-up or pull-down [5].

The boot ROM provides support for loading both encrypted (secure) and unencrypted
(non-secure) boot images. The boot ROM also supports execution of the stage-1 boot
image directly from linear flash sources - NOR and QSPI only - when using the eXecute-
In-Place (XIP) function. This feature is only available when using non-secure boot images
[5].

Bitstream (.bit)

SSBL (.elf)

FSBL (.elf) (Compulsory)

(Compulsory)

(Optional)

BOOT.BIN

ramdisk8M.image.gz

zImage

devicetree.dtb

Boot Medium

Figure 24.5: Required files for Zynq Linux boot medium
417

CHAPTER 24: Linux Booting
When in secure boot mode, and running secure boot ROM code, the CPU decrypts and
authenticates the PS image before storing it in the OCM. The CPU then branches into the
code in the OCM. When using non-secure boot, the CPU disables all secure boot features
before branching to the boot image in the OCM or, if the XIP feature is in use, the non-
volatile flash. Unless using the XIP feature, the boot image is limited to 192 KB [5].

As the PS uses hardware modules in the programmable logic for both the AES-256 and
HMAC (SHA-256) decryption and authentication, the PL must be powered on during
secure boot. The device encryption certificate is user-selectable from either the on-chip
eFUSE unit or the Battery Backup RAM (BBRAM).

The five possible boot sources are outlined below:

1. NAND Flash

2. NOR Flash

3. Quad-SPI (QSPI) Flash

4. Secure Digital (SD) Card

5. JTAG

Boot sources 1 - 4 are used in master boot mode, whereby the external boot image is
loaded by the CPU from non-volatile memory in the PS. JTAG, on the other hand, can only
be used in slave boot mode and does not support secure booting. When booting from
JTAG, a host computer acts as the secure master to load the boot image into the OCM via a
JTAG connection to the device.

Once the stage-1 boot image has been loaded into OCM - or in the case of XIP, the boot
image remains in non-volatile flash - the boot ROM releases control of the CPU to stage-1.

Figure 24.6 provides a high-level overview of the boot ROM flow.
418

CHAPTER 24: Linux Booting
.

24.3.3. Stage-1 (First-Stage Bootloader)

The FSBL is loaded into the OCM by the boot ROM after the initial boot period. The
FSBL is responsible for a number of initialisation functions which include initialising the
CPU with the PS configuration data, programming the PL using a bitstream, loading the

Boot ROM

Jump to next

Valid
Image
Found?

Execute
In Place
(XIP)?

offset

Increment to the next
2K offset

MULTIBOOT_ADDR

Load FSBL to OCM

Jump to FSBL
start

No

Yes

No

Yes

Yes

Figure 24.6: Boot ROM flow
419

CHAPTER 24: Linux Booting
second-stage bootloader or initial user applications into memory, and beginning execution
of the second-stage bootloader/initial user application code. Before the control of the CPU
is handed over to the second-stage bootloader, the FSBL disables the cache and the MMU,
as well as invalidating the instruction cache, as U-boot assumes that they are disabled upon
start [6].

Before exploring the functions of the FSBL further, it is useful to understand how the
boot image is structured, as the bitstream for the PL and the SSBL, as well as any other code
used by the SSBL, Linux or other operating systems, are grouped into partitions in the flash
image.

Boot Image Format (BIF)

The boot image format is comprised of the following [6]:

• Boot ROM header

• FSBL image

• Partition image(s)

• Unused space, if available

The boot image format is detailed in Figure 24.7.

It is worth noting that encryption is not compulsory in the FSBL, but the option is made
available for anyone who wishes to use it.
420

CHAPTER 24: Linux Booting
Boot Image Header

Image Header Table

Partition Header Table

FSBL RSA Authentication

Certificate (Optional)

Partition RSA Authentication

Certificate (Optional)

Partition RSA Authentication

Certificate (Optional)

Partition

Partition

AES Encrypted Image

HMAC Authenticated Image

FSBL

HMAC Signature

AES Encrypted Image

HMAC Authenticated Image

PS Image or PL Bitstream

HMAC Signature

Expansion Room

Encrypted FSBL

(AES and HMAC)

Partition

Partition RSA Authentication

Certificate (Optional)

Register Initialisation

Figure 24.7: Zynq Boot Image Format (BIF) structure
421

CHAPTER 24: Linux Booting
Authentication Certificate

For each authenticated partition, an authentication certificate is appended at the end. All
integers in the authentication certificate are stored in little-endian order [6]. Details of the
information stored in the authentication certificate is given in Table 24.3.

Table 24.3: Authentication certificate [6]

Offset Size Field Details

0x000 UInt32 Authentication header See Table 24.4

0x004 UInt32 Certificate size Should be 0x6C0

0x008 0x38 bytes Reserved Filled with zeros

RSA PPK

0x040 0x100 bytes (2048 bits) Primary modulus ----

0x140 0x100 bytes (2048 bits) Primary modulus
extension

0x240 UInt32 Primary public expo-
nent

Recommended to
be 0x00010001

0x244 0x3C bytes Zero padding ----

RSA SPK

0x280 0x100 bytes (2048 bits) Secondary modulus ----

0x380 0x100 bytes (2048 bits) Secondary modulus
extension

0x480 UInt32 Secondary public
exponent

Recommended to
be 0x00010001

0x484 0x3C Zero padding ----

0x4C0 0x100 bytes (2048 bits) RSA SPK signature ----

0x5C0 0x100 bytes (2048 bits) Partition signature ----

0x6C0 ---- ---- END of AC
422

CHAPTER 24: Linux Booting
The Xilinx BootGen tool (included with the SDK) precalculates the modulus extension
used in the Montgomery reduction for modular exponentiation in order reduce the
overhead on the FSBL [6]. These values are stored in the field directly following the
modulus fields. The authentication certificate contents is detailed in Table 24.4.

BootGen

The FSBL is combined with an optional PL bitstream and the SSBL/user application
code using the provided Bootgen program. Bootgen is a standalone application for gener-
ating bootable images that are compatible with the Zynq-7000 processor. The tool
assembles the boot image by prefixing a header block to a list of partitions - user ELF files,
FPGA bitstreams and other binary files - where each partition can optionally be encrypted
and authenticated. The resulting output is a single file which can be programmed directly
into the boot flash memory of the Zynq system [6].

The BootGen tool can be used via the SDK to automatically generate a boot image, or
can also be used via the command-line. The source code for the tool is also available, as
well as in Windows and Linux 32- and 64-bit binary form.

When creating the boot image via the BootGen tool in the SDK, the first partition must
be the FSBL ELF, followed by the optional bitstream partition and then the SSBL/appli-
cation code ELF (it should be noted that if a customised FSBL is used, the boot sequence

Table 24.4: Bit authenticating certificate header [6]

Bit(s) Field Value

31 to 16 Reserved Zeros

15 to 14 Authentication Certificate Format 00: PKSC #1 v1.5

13 to 12 Authentication Certificate Version 00: Current AC

11 Primary Public Key (PPK) Key Type 0: Hash Key

10 to 9 PPK Source 0: eFUSE

8 Secondary Public Key (SPK) Enable 1: SPK Enable

7 to 4 Public Strength 0: 2048

3 to 2 Hash Algorithm 0: SHA256

1 to 0 Public Algorithm 1: RSA
423

CHAPTER 24: Linux Booting
can be altered accordingly). If the optional bitstream is included in the boot image it must
directly follow the FSBL. The SSBL/application ELF must have an execution address of
greater than 1Mb, as during execution of the FSBL, DDR RAM is not remapped and any
address lower than 1Mb is not accessible [6].

An execution flow of the FSBL is detailed in Figure 24.8.

Start FSBL from OCM

Hand control of CPU

Get the
partition and

validate header?

to DDR address

Increment Multiboot
32K offset in Flash and
perform a soft reset

Load partitions from

No

Yes

Figure 24.8: FSBL execution flow

IO, Clock, DDR and Device
Initialisation

selected boot flash

Is it
a bitstream?Program the PL Yes

Copy partition to DDR

No
424

CHAPTER 24: Linux Booting
24.3.4. Stage-2 (Second-Stage Bootloader)

Stage-2 of the Zynq boot process depends on the type of operating system being booted.
For a standalone application, the application code will be loaded and executed at this stage.
If, however, an operating system such as Linux or Android is being loaded, stage 2 would
be a second-stage bootloader such as U-Boot.

Microprocessors execute code that resides in local memory. This is convenient for
standalone or bare-metal applications, but not suited to larger operating systems such as
Linux. This is because operating systems are stored on larger, permanent storage mediums
such as hard disk drives, USB Flash memory or CD-ROMs. On processor power-on, the
memory does not contain the OS; it is therefore the purpose of the bootloader to load the
OS into memory from the permanent storage [6].

U-Boot is a popular open source universal bootloader within the Linux community, and
is used by Xilinx for the Zynq-7000 AP processor. Xilinx provides the customised source
code for U-Boot that is designed to run on Xilinx development boards via a Git tree located
at the Xilinx Git repository [7]:

https://github.com/xilinx

As previously explained in this chapter, the Zynq boot process is split into three stages,
with the Boot ROM loading the FSBL, and the FSBL loading the optional bitstream and
SSBL. In this case, the SSBL is U-Boot and it is responsible for loading the compressed
Linux kernel image, the system device tree and the ramdisk image into memory. Once
these images are loaded into memory, U-Boot will initialise the execution of the Linux
kernel.

24.4. Chapter Review

In this chapter we have taken a look at the traditional boot process of Linux on a desktop
environment, including a description of the various stages such as the BIOS, the first- and
second-stage bootladers, the kernel and init.

 The process of booting embedded Linux on a Zynq-7000 AP device was then intro-
duced and compared, where applicable, to the desktop boot sequence. Greater importance
has been given to the Zynq process (this book is all about Zynq, afterall!), with care taken to
detail the various files required to successfully complete the boot sequence, including the
BOOT.BIN, zImage, devicetree.dtb and ramdisk8M.image.gz files. Further detail was also
provided on the BIF and the required authentication certificates. Finally, the bootgen
utility, used to assemble boot images for Zynq, was detailed.
425

CHAPTER 24: Linux Booting
24.5. References

NOTE: All URLs last accessed June 2014.

[1] IBM, “Inside the Linux boot process”, webpage.
Available: http://www.ibm.com/developerworks/linux/library/l-linuxboot/

[2] Digilent, Inc, “Embedded Linux Development Guide”, January 2013.
Available: https://www.digilentinc.com/Data/Products/EMBEDDED-LINUX/
Digilent_Embedded_Linux_Guide.pdf

[3] Free Standards Group, “System Initialization - Run Levels” in Linux Standard Base Core Specification 3.1,
2005.
Available: http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/runlevels.html

[4] B. Ward, “How Linux Boots” in How Linux Works, 1st. Ed, No Starch Press, 2004, pp. 54 - 63.

[5] Xilinx, Inc, “Zynq-7000 All Programmable SoC Technical Reference Manual”, UG585, v1.7, February 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

[6] Xilinx, Inc, “Zynq-7000 All Programmable SoC Software Developers Guide”, UG821, v9.0, June 2014.
Available: http://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf

[7] Xilinx, Inc, “U-Boot”, webpage.
Available: http://www.wiki.xilinx.com/U-boot
426

Postscript

Glossary

123
7-series - A generation of Xilinx FPGAs, comprising the Artix-7, Kintex-7 and Virtex-7, and also

including the Zynq-7000 SoC.

A
Accelerator Coherency Port (ACP) A direct connection between the Application Processing Unit

and programmable logic parts of the Zynq, not routed through AXI interconnect blocks.
Advance Microcontroller Bus Architecture (AMBA) A family of on-chip bus architectures

developed by ARM for use in system-on-chip designs.
Advanced eXtensible Interface (AXI) A high performance interconnect for use in high clock rate

system designs. It is a member of the AMBA family
Android An operating system based on the open-source Linux kernel which is mainly intended for

use on touchscreen mobile devices. In recent years Android has been customised for use on
embedded devices.

Application Processing Unit (APU) A specific section of the Zynq processing system that includes
the ARM processor cores, and their associated cache memories and NEON engines.

Application-Specific Integrated Circuit (ASIC) An integrated circuit which is designed for a
specific use, rather than general-purpose use.

ARM A family of processor architectures. The hard processor type which forms the basis of the Zynq
processing system is an ARM Cortex-A9 version. The term ‘ARM’ may also be used to refer to
the developer of the processor, i.e. a company of the same name.

Asymmetric Multi Processing The use of different operating systems and software stacks on
different cores within the same processor. In the context of Zynq, this corresponds to the two
cores of the Zynq processing system’s ARM Cortex-A9 processor.
429

Asynchronous Not aligned to a system clock.
AutoESL A tool for high level synthesis, superseded by Vivado HLS.

B
Basic Input/Output System (BIOS) The component of a computer system that is responsible for

initial system startup and locating available boot devices. Also responsible for initialisation and
testing of basic system hardware components.

Benchmarking The measurement and comparison of different processors or processing elements.
Binding The process of associating an operation with physical or logical resources to perform that

operation.
Bitstream A file created as part of the Zynq (or FPGA) design flow, for programming the program-

mable logic with the desired configuration. The file extension is .bit.
Block devices In a Linux system, devices capable of hosting a file system.
Block RAM A dense, dedicated silicon memory resource located within the programmable logic

section of the Zynq. Capable of being used in a variety of modes.
Board Support Package (BSP) The lowest layer of the software stack, enabling support of a specific

hardware base system by a desired operating system.
Bootloader A computer program that is responsible for loading the main operating system on a

computer system.
Bus An interconnection by which data and control signals are transmitted between processing

components of a computer system.

C
Cache A fast memory to which frequently uses instructions and data is copied from regular memory

for faster access. Fast access is enabled in the cache due to its high-speed and close proximity to
the processor.

Centralised Version Control System (CVCS) Utilises a single server to host all versioned files in a
project.

Character devices In a Linux system, a device which is accessed by a stream of bytes.
Configurable Logic Block (CLB) A functional grouping of logic resources in programmable logic.

In the Zynq architecture, a CLB corresponds to two logic slices.
Constraint A user-supplied limit or prescribed value in respect of some aspect of the design.

Examples include timing and placement constraints.
Coprocessor A special-purpose processing element that is used to supplement the functions of, and

assist, the main processor.
Copyleft A play on the word copyright referring to the practice of using copyright law in the

distribution of software and its modifications. Each modification retains the same rights.
CoreMark A standard benchmark used for evaluating the performance of processors.
430

Critical Path The longest combinatorial path between two clocked elements in a circuit.

D
Data flow A style of processing characterised regular passing of data through a chain of processing

stages. May refer to hardware or software (usually used in the context of hardware in this book).
Also a type of Vivado HLS directive for optimising the implementation of functions.

Debug To identify and resolve function problems in a software or hardware design.
Design Rule Check (DRC) A set of standard checks made by the development tools to find out

whether a user-created design has any basic faults.
Digital Signal Processor (DSP) A processor which has been specifically designed for the task of

digital signal processing, with an instruction set that is designed to carry out fast arithmetic
operations.

Direct Memory Access (DMA) A method which alleviates the processor from performing memory
transactions between coprocessing cores and memory through the use of an intermediate DMA
controller.

Directive A mechanicm in Vivado HLS for influencing the behaviour of the synthesis process, with
respect to a particular criterion.

Distributed Version Control System (DVCS) All versioned files in a repository are mirrored on the
clients host machine.

DMIP (Dhrystone Millions of Instructions Per second) A measure of the performance of a
processor when running the Dhrystrone standard test application.

Driver A software component that facilitates interaction with a hardware element of the system, or
a peripheral.

DSP48x / DSP48E1 A dedicated silicon resource for high-speed arithmetic operations. Located
within the programmable logic section of the Zynq. DSP48x is a general term, while the specific
block used on the Zynq-7000 is the DSP48E1.

E
Embedded system A processing system which is embedded within a larger system or product to

perform a single, dedicated function.
Extended Multiplexed Input/Output (EMIO) The mechanism for extending the fixed Multiplexed

Input / Output (MIO) facilities of the processing system, by extending into the programmable
logic.

F
Field-Programmable Gate Array (FPGA) An reconfigurable integrated circuit that contains a very

large number of identical configurable logic blocks, connected by programmable interconneccts.
Firmware The components of an embedded system which integrate hardware and software to form

a complete system, for instance the drivers and bootloader.
431

Fixed point A binary arithmetic representation of a number using a specified number of digits, and
comprising integer and fractional components.

Flip-flop The fundamental sequential logic element, capable of storing one bit of data and imple-
menting a 1 clock cycle delay. Found within the programmable logic section of the Zynq.

Floating point A method of representing numeric values as an approximation of the real value. The
number is coded as a fraction and an exponent in a way which supports a large range of values.

FPGA Mezzanine Connector (FMC) A standard, high throughput interface for interfacing
compatible extension cards to a development board. Such cards are usually referred to as FMC
cards.

G
General Purpose Input Output (GPIO) A collective term for the basic user input and output facil-

ities on a development board, usually including slide switches, push buttons, and LEDs.
General-purpose processor A processor which is designed to support a broad spectrum of applica-

tions, whilst not being optimised for any specific task.
Git A form of DVCS developed by Linus Torvalds.
GNU Project A mass collaboration project seeking to provide software that is free to run, distribute

and modify.
GTX Transceiver A hard IP block located in the programmable logic section, for supporting various

protocols for high-speed communications.

H
Hardware base system The custom designed hardware forming the basis of an embedded system.
Hardware Description Language (HDL) A category of programming language that describes the

behaviour of hardware.
Hard IP block A functional unit that is implemented as a dedicated, high performance and fixed

resource on the device. For instance, DSP48x slices, GTX Transceivers.
Hard processor A processor which exists as a dedicated silicon resource, with fixed configuration.

See also soft processor.
High Level Synthesis (HLS) A process which converts a design expressed in a C-based language into

a Register Transfer Level (RTL) description.

I
Input/Output Block (IOB) A unit on the programmable logic part of the Zynq which connects a

signal to a pin, for interfacing with external signals. Each IOB accommodates a single 1-bit signal.
Instruction set The collection of operations and data types which a processor supports natively.
Integrated circuit A collection of electronic circuits together on a single chip.
Integrated Development Environment (IDE) A software application which provides developers
432

with comprehensive features for the development of hardware and/or software systems.
Intellectual Property (IP) A hardware specification that can be used to configure the logic resources

of an FPGA or physically manufacture a silicon device.
Interconnect A switch-like module which manages and directs traffic between interfaces within a

system. The connects between two or more interconnects are formed using interfaces.
Interface A point-to-point connection for passing data, addresses and hand shaking signals between

master and slave clients within a system.
Interrupt A signal sent to a processor from hardware/software which indicates that an event needs

instantaneous attention. An interrupt signal tells the target processor to halt and save the status
of its current task, before processing a specific set of instructions.

IP-XACT A standardised specification which provides a metadata description of IP that is
compatible with a number of Integrated Development Environments.

ISE (Integrated System Environment) A Xilinx development tool suite for FPGAs and Zynq devel-
opment. Superseded by Vivado.

J
JTAG (Joint Test Action Group) In common usage, the term is used to refer to a connection made

for programming or testing a design on an FPGA or Zynq device. Officially refers to a
standardised test protocol.

K
Kernel The core of an operating system. It is the part of the operating system that is first to load on

boot, and therefore resides in main memory.

L
Latency A measurement of the delay between applying an input to a system or subsystem, and

observing the corresponding output. Usually expressed in clock cycles.
Linux A UNIX-like, open source operating system based on the Linux kernel by Linus Torvalds.
Lookup Table (LUT) One of the fundamental logic resources in the programmable logic section. A

LUT can implement a combinatorial logic function, a small ROM or RAM, or a shift register.

M
Machine code The low-level, binary stream of binary data relating to a computer program which a

processor is able to interpret and process.
Mechanism When referring to Linux device drivers, a mechanism dictates the capabilities of the

driver code.
Memory Management Unit (MMU) A component used to translate between virtual and physical

addresses. In the Zynq architecture, located within the Application Processing Unit.
433

MicroBlaze Xilinx’ standard soft processor type. Capable of being configured to user requirements.
Microcontroller An entire computer system on a single chip. Comprises of a processor, a fixed

amount of memory, and peripherals.
Microprocessor A single integrated circuit which that can be programmed to perform a wide range

of functions based on the instruction stored within its memory.
MicroZed A small and low cost Zynq development board with a limited number of peripherals,

capable of being used as a carrier module on a larger board.
Minix A variant of the UNIX OS.
Multiplexed Input/Output (MIO) The set of peripheral outputs from the Zynq processing system,

which are multiplexed to a dedicated IO bank.

N
NEON A resource within the ARM application processing unit that specifically caters for single-

instruction-multiple-data operations, which are typically required in media processing and DSP
type applications.

Netlist A netlist is a file representing connections and circuit elements. It is the primary output from
the process of synthesising an input design description.

Network interface In a Linux system, devices concerned with the transmission of data packets.

O
Opcode A machine code representation of a processor instruction.
Operating system The software program that is initiated by the bootloader, and via which the

management of all other software tasks and applications is performed.
OPMODE An instruction supplied to a DSP48x slice to configure the functionality it implements.

P
Package The physical outer housing of the Zynq device. The package dictates the set of IOBs that

may be bonded to pins and thus made available for use.
Partitioning The process of dividing the operations of system between multiple implementations

(i.e. hardware and software implementations).
Peripheral A functional block within an embedded system that is logically and physically separate

from the main processor.
Phase Locked Loop (PLL) An intergral part of the clock management circuitry of a Zynq device /

FPGA. Used to generate synchronised clock signals with low phase noise.
PicoBlaze A free-to-use, soft core 8-bit microcontroller, developed and maintained by Xilinx.
Pipelining The process of segregating a physical or logical processing stage (i.e. a set of operations

grouped by a data dependency) into a set of smaller sections. Accomplished via the insertion of
registers.
434

Place and Route A process undertaken to transfer a synthesised design to the physical resources of
an FPGA or Zynq programmable logic.

Pmod A de facto standard interface type for interfacing small add-on modules to a development
board.

Policy When referring to Linux device drivers, a policy dictates how the driver mechanisms are
carried out.

PowerPC A type of hard processor that was used in selected previous generations of Xilinx FPGAs.
Pragma In software development, a method of providing direction to the compiler beyond that

which is embodied within the code itself. In HLS, a method of integrating directives into the
source code.

Processing System The part of the Zynq device that includes an ARM processor and associated facil-
ities, and which is capable of running software applications.

Processor Hardware that executes instructions in a sequential manner.
Profiling A form of dynamic program analysis that aids the optimisation of a software application

by measuring properties of the application code.
Program Software written in a specific programming language to represent desired machine

behaviour.
Programmable Logic The section of the Zynq device which comprises reconfigurable logic and

interconnects. It has the same architecture as 7-series FPGA devices.

Q

R
Random Access Memory (RAM) A category of modifiable storage medium.
Read Only Memory (ROM) A category of non-modifiable storage medium.
Real-Time Operating System (RTOS) A category of operating systems defined by their ability to

respond quickly and predictably for a given task.
Register Transfer Level (RTL) A digital circuit design abstraction which models data flow between

hardware registers and the logical operations performed on that data.
Repository The database of all versioned files in a project utilising version control.

S
Simulation The process of imitating the execution of hardware on a general-purpose processor.
Single Instruction Multiple Data (SIMD) A type of operation in which the same instruction is

applied to several independent sets of input data simultaneously.
Slice A low-level grouping of programmable logic resources. In the Zynq architecture, a slice

comprises 4 Lookup Tables and 8 Flip-Flops, and associated circuitry.
435

Soft processor A processor which is formed from logic slices in the programmable logic section of a
Zynq device, or in general FPGA logic fabric. See also hard processor.

Snoop Control Unit (SCU) Part of the Zynq Application Processing Unit. Responsible for
maintaining memory coherency between cache memories and processor cores.

Solution A term used in the context of HLS. Refers to a particular design iteration based on a
standard set of source code, which may be unique in terms of applied directives and constraints,
resulting in a unique set of results.

Switch Matrix A resource for configuring the routing of signals between different parts of the
programmable logic.

Synchronous Being aligned to a reference clock signal.
Synthesis The process of translating an RTL source into a logic configuration which is targeted for

a specific programmable logic device.
System Call Interface An abstracting layer between the user-space and kernel-space in Linux that

handles all communications between the two.
System-on-Chip (SoC) An integrated circuit which combines all components of a system or

computer on to a single chip. SoCs can contain analog, digital and mixed-signal components.
SystemC A programming language (or, strictly, C++ with specific extensions) which is used for

modelling hardware at various levels of abstraction. Can be used as an input language for high
level synthesis.

System Generator A block-based design tool for the creation of DSP systems. Hosted in the
MATLAB/Simulink environment.

T
TCL script (‘tickle script’) A file containing a set of commands written in an industry standard

format, usually used for directing and controlling the behaviour of design tools.
Terminal A program run on a host PC to facilitate communication with software operating on a

Zynq device. Used for debugging and interaction.
Testbench A harness for testing a design. Usually refers to an HDL file, although in the context of

HLS, may also refer to a C-based harness.
Trip Count Used in Vivado HLS to represent the number of times a loop is executed.

U
Universal Asynchronous Receiver / Transmitter (UART) A connection that facilitates communi-

cation over a serial link. Often used in conjunction with a Terminal application for debugging /
interaction with software.

UNIX A multitasking computer OS developed by AT&T at Bell Labs.
Unroll The process of expanding a described set of operations into a fully parallel hardware imple-

mentation.
436

V
VHSIC Hardware Description Language (VHDL) A standardised hardware description language.
Verilog A standardised hardware description language.
Version control The management of changes to source code and other files, usually involving the

retention of previous versions.
Virtual file system A level of abstraction, creating a unified interface between the individual

file systems and the rest of the kernel.
Virtual machine An OS implemented in software through emulation in the system’s primary OS.
Virtual memory A memory management technique whereby the storage available to a process or

task is virtualised as a contiguous global address space.
Vivado The Xilinx software suite used for developing Zynq systems. Also supports FPGA devel-

opment.
Vivado HLS Xilinx tool for creating hardware designs from C/C++/SystemC descriptions.

W
Webpack A version of the Xilinx design tools available free of charge from the Xilinx website. Some

limitations apply, in terms of device targets and functionality.

X
Xilinx Design Constraints (XDC) A file type used for defining constraints as part of the design

process. File extension is .xdc.
Xilinx Inc. The programmable logic company and pioneer of FPGAs, and the creators of Zynq.
Xilinx University Program A department within Xilinx devoted to supporting academic uses of

Xilinx design tools and development boards.

Y

Z
ZedBoard A low cost development board featuring a Zynq-700 0 SoC, and a number of peripherals.
ZedBoard.org A website supporting the above development board.
ZyBo A smaller and lower cost Zynq development board than the ZedBoard, but retaining a number

of peripherals.
Zynq-7000 A umbrella term for the first generation of Zynq devices.
437

438

List of Acronyms

123
2G 2nd Generation (mobile cellular networks)

3G 3rd Generation (mobile cellular networks)

3GPP 3rd Generation Partnership Project

3GPP LTE 3rd Generation Partnership Project Long Term Evolution

A
ACP Accelerator Coherency Port

AES Advanced Encryption Standard

AFI AXI FIFO Interface

AGPL Affero General Purpose License

AHB Advanced High-performance Bus

ALU Arithmetic and Logic Unit

AMBA Advanced Microcontroller Bus Architecture

AMP Asymmetric Multi Processing

ANSI American National Standards Institute

AP All Programmable

APB Advanced Peripheral Bus
439

API Application Programming Interface

APSoc All Programmable System on Chip

APU Application Processing Unit

ASIC Application Specific Integrated Circuit

ADC Analogue to Digital Converter

ATP Authorised Training Provider

AWDT Watch Dog Timer

AXI Advanced eXtensible Interface

AXI_HP Advanced eXtensible Interface - General Purpose

AXI_HP Advanced eXtensible Interface - High Performance

B
BBRAM Battery Backup Random Access Memory

BIF Boot Image Format

BIOS Basic Input / Output System

BOM Bill of Materials

BSD Berkeley Software Distribution

BSP Board Support Package

BTAC Branch Target Address Cache

C
CAN Controller Area Network

CCTV Closed Circuit Television

CDK C/C++ Development Kit

CDMA Code Division Multiple Access

CFR Crest Factor Reduction

CLB Configurable Logic Block

CLI Command Line Interface

CMOS Complementary Metal Oxide Semiconductor
440

CORDIC Co-Ordinate Rotation DIgital Computer

CPU Central Processing Unit

CTT Concepts, Tools and Techniques

CVCS Centralised Version Control System

D
DAP Debug Access Port

DDR Double Data Rate (referring to memory)

DDRC DDR Controller

DDRI DDR Interface

DDRP DDR PHY

DevC Device Configuration (Unit)

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DMIPs Dhrystone Millions of Instructions Per Second

DOS Disk Operating System

DPD Digital Pre-Distortion

DPR Dynamic Partial Reconfiguration

DRAM Dynamic Random Access Memory

DRC Design Rule Check(s)

DSP Digital Signal Processing / Digital Signal Processor

DTS Device Tree Source

DUT Device Under Test

DVCS Distributed Version Control System

DVI Digital Visual Interface

E
EABI Embedded Application Binary Interface

ECC Error Correction Coding / Error Correcting Code
441

EDA Electronic Design Automation

EDK Embedded Development Kit

EEMBC Embedded Microprocessor Benchmark Consortium

ELF Executable Linkable Format

EMIO Extended Multiplexed Input / Output (equivalent to Extended MIO)

ESD Electro-Static Discharge

ESL Electronic System Level

F
FF Flip Flop

FFT Fast Fourier Transform

FIFO First In First Out

FIQ Fast Interrupt reQuest

FIR Finite Impulse Response

FMC FPGA Mezzanine Card

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FSBL First Stage Boot Loader

FSF Free Software Foundation

FSM Finite State Machine

G
GCC GNU Compiler Connection

GDB GNU Debugger

GIC General Interrupt Controller / Generic Interrupt Controller

GigE Gigabit Ethernet

GHB Global branch History Buffer

GNU GNU’s Not Unix (recursive acronym)

GP General Purpose
442

GPIO General Purpose Input / Output

GPL GNU General Purpose License

GPP General Purpose Processor

GPS Global Positioning System

GPU Graphics Processing Unit

GPV Global Programmers View

GRUB Grand Unified Boot Loader

GTX High speed serial transceiver (note: not an acronym as such!)

GUI Graphical User Interface

H
HD High Definition

HDL Hardware Description Language

HDMI High Definition Multimedia Interface

HIL Hardware In the Loop

HLS High Level Synthesis

HMAC Hash-based Message Authentication Code

HP High Performance

HR High Range

HTML Hyper Text Markup Language

I
IC Integrated Circuit

ICAP Internal Configuration Access Port

IDE Integrated Design Environment

IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

II Initiation Interval

IO Input / Output
443

IOB Input / Output Block

IOP Input / Output Peripheral(s)

IOSERDES Input / Output Serialiser / Deserialiser

IoT Internet of Things

IP Intellectual Property

IPC Inter-Process Communication

IPI Inter-Processor Interrupt

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IRQ Interrupt ReQuest

ISE Integrated System Environment

ISO International Organization for Standardization

J
JTAG Joint Test Action Group

JTNC Joint Tactical Networking Centre

JTRS Joint Tactical Radio System

K
kgdb Remote host Linux kernel debugger through gdb

L
L1 Level 1 (Cache)

L2 Level 2 (Cache)

L3 Level 3 (Cache)

LCD Liquid Crystal Display

LED Light Emitting Diode

LGPL Lesser General Public License

LILO LInux LOader

LMS Least Mean Squares
444

LRU Least Recently Used

LTS Long Term Support

LUT Lookup Table

M
M2M Machine to Machine

MAC Media Access Control

MBR Master Boot Record

MCS Micro Controller System

MIO Multiplexed Input / Output

MIPs Millions of Instructions Per Second

MMU Memory Management Unit

MPE Media Processing Engine

MPL Mozilla Public License

MSPS Mega Samples Per Second

N
NCO Numerically Controlled Oscillator

NFC Near Field Communications

NFS Network File System

NIC Network Interface Controller

NMI Non-Maskable Interrupt

O
OCM On-Chip Memory

OEM Original Equipment Manufacturer

OFDM Orthogonal Frequency Division Multiplexing

OLED Organic Light Emitting Diode

OMP Orthogonal Matching Pursuit

ONFI Open NAND Flash Interface
445

OpenCL Open Computing Language

OpenCV Open source Computer Vision

OPMODE Operation Mode

OS Operating System

OSCI Open SystemC Initiative

OTG On The Go

P
PC Personal Computer

PCAP Processor Configuration Access Port

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect express

PFN Page Frame Number

PHY PHYsical Layer

PID Process Identifier

PL Programmable Logic

PLL Phase Locked Loop

PMU Performance Monitor Unit

Pmod Peripheral module

PPI Private Peripheral Interrupts

POSIX Portable Operating System Interface

POST Power On Self Test

PR Partial Reconfiguration

PS Processing System

PPK Primary Public Key

Q
QoS Quality of Service
446

QPSK Quadrature Phase Shift Keying

QSPI Queued Serial Peripheral Interface

R
RAM Random Access Memory

RF Radio Frequency

RISC Reduced Instruction Set Computer

RM Reconfigurable Module

ROM Read Only Memory

RP Reconfigurable Partition

RTL Register Transfer Level

RTOS Real Time Operating System

S
SATA Serial Advanced Technology Attachment

SCI System Call Interface

SCSI Small Computer System Interface

SCU Snoop Control Unit

SD Secure Digital

SDF Standard Delay Format

SDK Software Developer’s Kit

SDIO Secure Digital Input Output

SDR Software Defined Radio

SERDES Serialiser / Deserialiser

SFP Small Form factor Pluggable (type of connector)

SGI Software Generated Interrupts

SIMD Single Instruction Multiple Data

SLM System Level Model / Modelling

SMA SubMiniature version A (type of connector)
447

SMC Static Memory Controller

SMP Symmetric Multi Processing

SoC System on Chip

SoPC System on Programmable Chip

SPI Serial Peripheral Interface

SPI Shared Peripheral Interrupts

SPK Secondary Public Key

SRAM Static Random Access Memory

SRL16 Shift Register Length 16

SRL32 Shift Register Length 32

SSBL Second Stage Boot Loader

SSL Secure Socket Layer

SWDT System Watch Dog Timer

T
TCL Tool Command Language

TLB Translation Look-aside Buffer

TLM Transaction Level Model / Modelling

TRM Technical Reference Manual

TTC Triple Timers / Counters

U
UART Universal Asynchronous Receiver Transmitter

UCF User Constraints File

UG User Guide

USB Universal Serial Bus

V
VCD Value Change Dump

VCS Version Control System
448

VFP Vector Floating Point

VFS Virtual File System

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language (see VHSIC below!)

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VM Virtual Machine

W
WFE Wait For Event

WFI Wait for Interrupt

WiFi Wireless Fidelity

X
XADC Xilinx Analogue to Digital Converter

XDC Xilinx Design Constraints

XIP eXecute In Place

XMD Xilinx Microprocessor Debugger

XML eXtensible Markup Language

XPS Xilinx Platform Studio

XST Xilinx Synthesis Technology

XUP Xilinx University Program

Y
YAMD Yet Another Malloc Debugger

Z
ZED Zynq Evaluation & Development
449

450

Index
123
3GPP LTE 357
7-series 1, 66

Artix-7 40, 80
Kintex-7 80

A
Abstraction 7, 116, 261

levels of 256
Academic 133

curriculum 149
licenses 158
project 147, 150, 154
research 147, 156

Dynamic Partial Reconfiguration (DPR)
157

embedded vision 157
hardware virtualisation 157
image processing 156–157

software support 158
teaching 147, 149, 154, 158

computer science 150
electronic engineering 150
embedded systems design 150, 154
FPGA 150–151
materials 160
processor architecture 151

technical support 160
Academic development boards

ZedBoard 159

AccelDSP 261
Accelerator Coherency Port (ACP) 19, 33
ACP 193–195
Address

address range 401
address space 400
space 402
virtual addresses 401

address
address phase 354

address channel 354
Advanced Driver Assistance Systems (ADAS) 102
Advanced eXtensible Interface 353
Advanced Microcontroller Bus Architecture 353
AMBA 30
Android 59, 375–377
Application Processing Unit (APU) 17, 31
Application Programming Interface (API) 372
Application Specific Integrated Circuit (ASIC) 2
Applications 101

aerospace 103
defence 103
GPS 102
high performance computing 105
image and video processing 104
Image processing 19
medical 105
motor control 104
RADAR 102
satellite 102
Signal processing 19, 28
451

Video processing 19
Zynq 77, 98

Architecture-dependent code 406
Arithmetic 26–27

DSP48E1 26
fixed point 289, 291
wordlengths 26

ARM 353
ARM v7 architecture 20–21
Cortex-A9 1, 83–84, 89, 92
Documentation 20
Processor IP 21

ARM Cortex A9 16, 20
Artix-7 40
Assembly language 262
atomic operations 356
Authorised Training Providers (ATPs) 160
AutoESL 65, 262
Avnet 133
AXI 5, 54, 96, 120, 197, 203, 208, 353, 360

Accelerator Coherency Port 33
AXI channels

Address Channels 356
Read Address Channel 362
Read Data Channel 356, 362
Write Address Channel 362
Write Data Channel 356, 362
Write Response Channel 356, 362

AXI Interconnect 362
AXI interconnect 354
AXI interface 192
AXI masters 354
AXI slaves 354
AXI4 30, 353–354
AXI4-Lite 31, 354
AXI4-Stream 31, 354
AXI_ACP 202
AXI_GP 198–199, 202
AXI_HP 198–200
bus protocol 298
buses 30
General purpose interface 33
High Performance Ports 33
Interconnect 31
Interface 31
interface 1
PS-PL Interfaces 32

AXI ports (general purpose) 33
AXI ports (high performance) 33

AXI4 30
AXI4-Lite 31
AXI4-Stream 31

B
Bare-metal 59, 374
Basic Input/Output System (BIOS) 409, 411
Bill of Materials (BOM) 77, 79, 95, 107
BIT (*.bit) file 59
Bitstream 59
Black box 62
Block RAM 25, 40
Block RAM (BRAM) 55
Board Support Package (BSP) 58, 406
Boot sequence 385
Booting

Boot Image Format (BIF) 420
bootloader 410

First-Stage Bootloader (FSBL) 411–412,
414, 419–420, 423–425

ZedBoard 139
BRAM 357
Buffer

buffer overruns 393
cache 405

burst-based transactions 354
Bus 5, 184

arbitration 186
AXI 30
bandwidth 188
bridge 186
master 186
peripheral bus 176, 185
slave 186
system bus 176, 185

C
Cache 178

Level 1 (L1) 17–18, 21, 179
Level 2 (L2) 17, 180
Level 3 (L3) 180

cache 17
Cache memory 31
Carry logic 25
C-based languages 261, 264

C (programming language) 262
C++ (programming language) 263
SystemC 243, 245, 261, 263–264

Channel Decoder 357
452

ChipScope 66, 357
Clocks 29
Cloud 115
Cognitive radio 110–111
Command line 395
Communication overhead 93, 96
Complementary Metal Oxide Semiconductor

(CMOS) 411
Computer vision 115–119, 126, 153

example 120
Configurable Logic Block (CLB) 23
Constraints 34, 67

timing 274
Controller Area Network 357
Controller Area Network (CAN) 22, 55
Co-processing 94

co-processor 54, 177
Copyleft 388
CORDIC 358
CoreMark 82–83, 86, 89
CPU Private Peripheral Interrupts (PPI) 214
Crest Factor Reduction 357
Critical path 274, 310

D
Data

big data 115, 149
conversion 71
flow 54

backpressure 302
downstream 302
upstream 302

DDR 203–204
DDRC 203
DDRI 203
DDRP 203

Debug Access Port (DAP) 198
Debugging 52, 393

gbd 395
gdb 394–395
kgdb 394–395
MEMWATCH 393–394
Oops 394–395
strace 393–394
Yet Another Malloc Debugger (YAMD) 393–

394
Deinterlacer, 357
Deinterleaver 358
Design flow 9, 47, 53, 96

Zynq SoC 8
Design reuse 7–8, 62, 255

education 152
Design Rule Check (DRC) 55
Development Boards

ZC702 Evaluation Kit 157
Development boards 52, 150, 154, 159

MicroZed 142
ZC702 Evaluation Kit 67, 69, 71
ZC706 Evaluation Kit 69
ZedBoard

See also ZedBoard
ZyBo 159

Device Configuration Unit (DevC) 198, 415
Device drivers 385
Devices

block devices 407
character devices 407
drivers 59, 406

ZedBoard USB-UART 138
network interfaces 407
selection critera 78

Dhrystone 82
Digilent 133, 155
Digital Predistortion 357
Digital Signal Processing (DSP) 19, 28, 109
Digital Signal Processor (DSP) 89, 177
Direct Memory Access 353, 357
Direct Memory Access (DMA) 34, 187
Distributed RAM (DRAM) 25
DMIPs 82, 86
Documentation 249
Documentation Navigator 48
Drivers 395
DSP48E1 25–26, 40

OPMODE 27
DSP48x 274

DSP48E1 55
Dynamic Partial Reconfiguration (DPR) 110, 121,

123–124, 157
Dynamic reconfiguration 109
Dynamic spectrum access 110

E
Ecosystem (Zynq) 101
Electronic System Level (ESL) design 263
ELF (*.elf) file 59
Embedded system

hardware system 5
453

software system 5
Embedded systems 173, 371, 373

embedded vision 115
See also computer vision

networked 149
operating system 371

Android 375–377
embedded Linux 373
Real-Time Operating System (RTOS) 373,

382
standalone 59, 373–374

processor 80, 177
Emulated 389
Error-Correcting Code (ECC) 203
Ethernet 22, 357
Executable image 402
Expansibility 114
Extended MIO (EMIO) 21, 34

F
Fast Fourier Transform (FFT) 19
FFT 358
Field Programmable Gate Array (FPGA) 1, 4, 237

FPGA Mezzanine Connector (FMC) 71
FIFO 358, 360
File system 385, 395, 397, 404

affs 404
ext 404
ext2 404
hpfs 404
iso9660 404
minix 404
mounted 405
msdos 404
ncp 404
proc 404
smb 404
sysvs 404
ufs 404
umsdos 404
vfat 404
xia 404

Finite Impulse Response (FIR) filter 19, 28, 92
Finite State Machine (FSM) 322
FIR 358
First In First Out (FIFO) 25
First In First Out (FIFO) buffer 33
First-Stage Bootloader (FSBL) 409
Flip-Flops (FFs) 24

Floating Point
Floating Point Unit (FPU) 17, 20
IEEE 754 standard 20

Floating point 19, 84
Floating Point Unit (FPU) 21, 80
FPGA 391
Free Software Foundation 386, 395

G
Gamma Correction, 357
General Purpose Input/Output (GPIO) 21–22
General Purpose Processor (GPP) 89
Generic Interrupt Controller (GIC) 196, 211–213,

215, 218
Git 392
GNU 385–389, 394
GPIO 55
GPL 387–390
Grand Unified Bootloader (GRUB) 413
Graphical User Interface (GUI) 373
GTX Transceiver 29
GTX transceiver 69

H
Hardware

acceleration 89, 93–94, 98
Hardware in the Loop (HIL) 57, 59
system design 47

Hardware Base System 58
Hardware Description Language (HDL) 63, 240–

241
behavioural 257
simulation 57
structural 257
Verilog 150, 239, 243
VHDL 150, 239, 243, 330

Hardware platform 58
Hardware/software partitioning 92, 97, 259
HDL Coder 241, 247, 261
Hierarchy 295
Hierarchy (system) 54
High Level Synthesis (HLS) 8, 78, 96, 153, 255, 281

algorithm synthesis 265–266
design iterations 269
directives 258
education 152
golden reference 268
interface synthesis 265

ports 266
454

protocols 266
scheduling and binding 273

High Performance (HP) Input/Output 28
High Range (HR) Input/Output 28

I
I2C bus 22
ICAP 357
Image Edge Enhancement 357
Image processing 19, 89, 115–116, 118

abstraction 117, 119
description 118
education 152
features and objects 118–119
implementation 118
IP 120
pixel level processing 117, 119

iMPACT 66
Implementation

metrics 259, 266, 286
clock frequency 271
I/O requirements 271
latency 271
power consumption 271
resources/area 271, 274
throughput 271, 274

Inode 405
Input/Output Block (IOB) 25, 28
Instruction sets 19
Intellectual P 244
Intellectual Property (IP) 7, 56, 62, 126, 152, 237,

239–240, 343–345, 347–350
IP subsystem 239, 349
packaging 281
Vivado HLS 330

Interconnect 31, 198–199, 345
Central interconnect 198
Interconnect master 199
Interconnect slave 199
Master 31
Master interconnect 198
Memory interconnect 198
OCM interconnect 198
Slave 31
Slave interconnect 198

interconnect 353
Interconnect master 199
Interconnect slave 199
Interface 31

Interfaces
Communications 21
Communications transceivers 40
Controller Area Network (CAN) 22
Ethernet 22
External 21
GPIO 21–22
GTX Transceiver 29
I2C bus 22
PCI Express 29, 69
PS-PL 21, 32
SD card 22
Serial Peripheral Interface (SPI) 22
UART 22, 55
USB 22, 52

Interleaver 358
Internet 148

connected devices 148
Internet of Things (IoT) 115, 148–149
protocol

IPv4 148
IPv6 148

traffic 148
Interrupts 183, 211

CPU Private Peripheral Interrupts (PPI) 213
interrupt handler 399
interrupt interface 196
Shared Peripheral Interrupts (SPI) 213
Software Generated Interrupts (SGI) 213
software interrupt 399

IOSERDES 28
IP block

Hard IP block 29
IP Integrator 353
IP library 346
IP-XACT 7, 62, 152, 243, 330, 346, 351
ISE Design Suite 47, 64

ISim 65
System Generator 50, 55, 65, 152, 229, 241,

247, 261, 330
Xpower Analyzer 65

J
Java 261
JTAG 29

modes 139
ZedBoard programming 138
455

K
Kernel 385–387, 392, 394–395, 397, 403

code 399, 401
flags 402
kernel-space 386, 398

Kintex-7 40, 85
KVM 390

L
Latency 286, 310–311
LEON4 86
Licensing

free 386
GNU Lesser General Public License (LGPL) 348
management tools 48
Modified-BSD license 348

Linux 59, 157, 375, 379, 381, 385–387, 389–390,
394–395, 397, 409–410, 413–415
Boot ROM 417–418, 420
Grand Unified Boot Loader (GRUB) 413
Init 413
Kernel 413, 425
Linux booting 410, 413–415
Linux Loader (LILO) 413
security model 402

Linux Loader (LILO) 413
Lookup Tables (LUTs) 24

M
Machine code 402
Machine vision

See Computer vision
Machine-to-Machine (M2M) 115, 148
Master Boot Record (MBR) 411–412
MATLAB 51, 57, 67, 120, 241, 247, 261
Media Access Controller 357
Memory

access 187
cache coherence 18
controller 176
Distributed RAM (DRAM) 25
high memory 401
low memory 401
main memory 397
management 397, 401
memory allocation 393
Memory Management Unit (MMU) 17
On-Chip Memory (OCM) 17–18
physical memory 402

Programmable Input/Output (I/O) 187
Random Access Memory (RAM) 25, 409
Read Only Memory (ROM) 25

Metadata 392
MicroBlaze 16, 80, 83–85, 87

Micro Controller System (MCS) 84
Microcontroller buses 353
Minix 385
Multiplexed Input/Output (MIO) 21
Multi-processing 402

Asymmetric Multi-Processing (AMP) 378
Symmetric Multi-Processing (SMP) 378

N
NEON 17, 19, 21, 55, 89, 92, 94, 119
Numerically Controlled Oscillator (NCO) 109

O
On-Chip Memory (OCM) 31, 193, 196–200, 202,

208–210, 215, 414
OpenCL 153
OpenCV 120, 126, 153, 156
OpenRISC 86
OpenSparc 86
Operating system 385
Operating System (OS) 58–59, 403
Optimisation 307
OS 386

P
Page 400

page fault 401
Page Frame Number (PFN) 278, 400
page table 400

Parallelism 54
Partitioning

See Hardware/software partitioning
PCI Express 29
Peripheral 5–7
PetaLinux 381
Phase Locked Loop (PLL) 29
Physical layer (PHY) 109
PicoBlaze 85
Pipelining 310
PlanAhead 65
Pmod 71, 154
Power consumption 124
Power-On Self Test (POST) 411
PowerPC 86, 88
456

Printed Circuit Board (PCB) 2
Process

child process 402
creation 402
destruction 403
fork 402
management 397, 401
scheduler 403
termination 402

Processing
mechanisms 407
policies 407

Processing System (PS) 4, 15
Processor 176

co-processor 177
Digital Signal Processor (DSP) 177
embedded 177
execution 90
execution cycles 89–90, 180
hard 80, 98
hard processor 16
instruction set 84
microcontroller 176
microprocessor 176
multi-core 90
operation 90
operation (non real-time) 90
priority 90
processor architecture 398
processor interrupts 399
routine 90
soft 80, 88, 98
soft processor 16
subordinate 84

Professor Workshops 160
Profiling 224–225
Programmable Logic (PL) 4, 15, 23, 80, 89, 109,

265
Block RAM 25
carry logic 25
Configurable Logic Block (CLB) 23
DSP48E1 25
Flip-Flops (FFs) 24
Input/Output Block (IOB) 25
Lookup Tables (LUTs) 24
slices 24
switch matrix 24

Programming and debug 29
JTAG 29

security 139

R
Radio

portability 108
standards 107–108
transceiver 107

Radio Frequency (RF) 109
spectrum 110–111

Random Access Memory (RAM) 25
Read Only Memory (ROM) 25
Real-time

processing 116
Real Time Operating System (RTOS) 59, 126,

374
firm real-time 374
hard real-time 374
soft real-time 374

systems 92
hard real-time 92
soft real-time 92

Real-Time Operating System (RTOS) 382
Register Transfer Level (RTL) 8, 243, 245–248, 257

simulation 245–246
Remote machine 395
Repository 391–393
Research (academic) 147

S
SD card 22
Second-Stage Bootloader (SSBL) 409
SelectIO Resources 28
Serial Peripheral Interface (SPI) 22
Shared Peripheral Interrupts (SPI) 215
Simulink 51, 57, 67, 120, 241, 247
Single Instruction Multiple Data (SIMD) 19, 27
Slices 24
Smart

agriculture 111–112
building 111–112
city 111–112, 114, 148
grid 111–112
grids 148
home 111, 113, 148
network 111, 114
system 111
transport 111–112

Snoop Control Unit (SCU) 18, 31, 197–198
Software
457

system design 47
Software Defined Radio (SDR) 71, 107–109, 121–

122, 156
education 152
military 108

Software Development Kit (SDK) 19, 50, 55, 57, 65,
228, 381

Software Generated Interrupts (SGI) 217
Static Memory Controller (SMC) 206–208
Switch matrix 24
Synthesis

logic synthesis 257
physical synthesis 257

System bus 176
System call 399, 403
System Call Interface (SCI) 398
System integration 60
System Level Model (SLM) 257
System-level design 96
System-on-Chip (SoC) 2, 4, 147, 149, 263
System-oriented design 47
Systems-on-Chip (SOC) 239

T
TCL scripting language 63, 286

commands 284
Team-based design 54, 60
Throughput 310
Time-to-market 107
Training 147, 160

See also Academic
online 161
QuickTake 161
SpeedWay 143
videos 161

Transaction Level Modelling (TLM) 263

U
UART 22
UCF file (*.ucf) 67
Universal Serial Bus (USB) 22
UNIX 386

UNIX-like 386
User-space 393–394, 398, 402

V
Verification 8, 62, 263
Verilog

See Hardware Description Language (HDL)

Version control 391
CVCS 391–392
DVCS 391–392
VCS 392

VHDL
See Hardware Description Language (HDL)

Video & Imaging Kit 69
Video processing 19, 91, 115–116, 118

compression 116
Virtual address space 401
Virtual Box 389
Virtual File System 405
Virtual machine 389
Virtual memory 400
Vivado 353, 360

IP Integrator 360
ZedBoard support 136

Vivado Design Suite 10, 47, 64, 79, 149, 227, 241,
281, 343–344, 350
board support 136
documentation 72
IP Catalog 241, 343, 345–346, 349–350
IP Integrator 55, 57, 62, 65–66, 227, 330, 349
IP Packager 350
System Generator 50, 55, 65, 152, 229, 241,

247, 261, 330
Vivado Device Programmer 66
Vivado Integrated Development Environment

(IDE) 50, 55, 65
Vivado Logic Analyser 50
Vivado Logic Analyzer 66
Vivado Power Analyzer 65
Vivado Simulator 49, 59, 65
Vivado Synthesis 65
WebPACK 10, 158

Vivado HLS 8, 50, 55, 63, 65, 98, 121, 243, 255,
264, 281
algorithm synthesis 309

data types 311
loops 319

arithmetic
floating point 294

arrays 327
directives 327–328
resources 327

C/RTL cosimulation 268–270
clock period 310
clock uncertainty 310
command line interface 286
458

concurrency 317, 319
constraint 310, 328–329

interface 329
latency 328
resource utilisation 328

constraints 275–276
control component 322
data dependency 312–313
data types 287

arbitrary precision 287, 289, 294
boolean 289
C and C++ (native) 287
complex 289
extended precision floating point 289
fixed point 291
floating point 294
overflow 291–292
quantisation 291–292
saturation 291–292
SystemC 292–293
validation 294

dataflow (pipelining) 316–319
datapath component 322
design flow 267
directive 328
directives 96, 266, 269, 276, 284, 307, 319,

321–322, 327–329
export 330
export from 269, 276
function return statement 297
functional verification 268
Graphical User Interface (GUI) 284

perspectives 284
hardware implementation 309
hierarchy 295
HLS process 272
implementation metrics 309
interface 295

AXI 303
block-level protocol 295, 302–304
directive 304–305
manual specification 308–309
port-level 296

protocol 295
protocol 296, 298, 300–301
specification 295
synthesis 295
SystemC 308
top level function 295

IP 277
Iteration Interval (II) 311
latency 310–311, 313, 315, 317
loops 286, 319, 325

flattening 324–325
hardware 321
latency 319–320, 326
merging 321–322
nesting 323, 325
partially unrolled 321
pipelining 326
rolled 319, 321
throughput 321, 324, 326
unrolled 321, 326

optimisation 275, 307, 316, 319, 328
output languages 276
perspective 286
pipelining 310–312, 314–316, 326
pragma 284, 307, 329
scheduling and binding 261
solutions 266, 276, 284, 309, 328–329
synthesis report 286, 329
SystemC 308
throughput 310, 313, 315, 317
video libraries 120

VMware Player 390
VMware Workstation 390
VOIP 357

W
WebPack 10, 49
Windows Virtual PC 390
Wireless connectivity 107
write channel 355
write response channel 354

X
XADC 71
Xcell Daily Blog 106
Xcell Journal 106
XDC (*.xdc) file 67
XEN 390
Xilinx

Documentation 20
Xilinx Alliance Program 125
Xilinx Microprocessor Debugger (XMD) 59
Xilinx Platform Studio (XPS) 65–66, 227, 330
Xilinx Synthesis Technology (XST) 65
Xilinx University Program (XUP) 72, 147, 154, 156,
459

158–159
contact details 160
membership 160
Professor Workshops 160
teaching materials 160

Z
ZedBoard 10, 133, 154, 159

booting 139
community 144
constraints 143
documentation 142
hardware configuration 137
jumper settings 140
kit contents 137
layout 135
memory 134
oscillator 134
programming 138
reference designs 144
support forums 145
training 143
tutorials 143
USB connections 138
USB-UART drivers 143
Vivado support for 136
Zynq device 134

Zynq 4, 66, 353, 360, 391
applications of 101
Architecture 15, 41
architecture 6
booting 414–415, 425
design flow 107
ecosystem 101, 125
physical size 96
power consumption 107

Zynq-7000
Kintex-7 40

Zynq-7000 devices 39
Automotive grade 40
Defence grade 40
460

	Contents
	Foreword
	Acknowledgements
	Introduction
	1.1. System-on-Chip with Zynq
	1.2. Simple Anatomy of an Embedded SoC
	1.3. Design Reuse
	1.4. Raising the Abstraction Level
	1.5. SoC Design Flow
	1.6. Practical Elements
	1.7. About This Book
	1.8. References

	PART A
	The Zynq Device (“What is it?”)
	2.1. Processing System
	2.1.1. Application Processing Unit (APU)
	2.1.2. A Note on the ARM Model
	2.1.3. Processing System External Interfaces

	2.2. Programmable Logic
	2.2.1. The Logic Fabric
	2.2.2. Special Resources: DSP48E1s and Block RAMs
	2.2.3. General Purpose Input/Output
	2.2.4. Communications Interfaces
	2.2.5. Other Programmable Logic External Interfaces

	2.3. Processing System — Programmable Logic Interfaces
	2.3.1. The AXI Standard
	2.3.2. AXI Interconnects and Interfaces
	2.3.3. EMIO Interfaces
	2.3.4. Other PL-PS Signals

	2.4. Security
	2.4.1. Secure Boot
	2.4.2. Hardware Support
	2.4.3. Runtime Security
	Zynq-7000 and ARM TrustZone Technology

	2.5. Zynq-7000 Family Members
	2.6. Chapter Review
	2.7. Architecture Reference Guide
	2.8. References

	Designing with Zynq (“How do I work with it?”)
	3.1. Getting Started
	3.1.1. Obtaining Design Tools
	3.1.2. Design Tool Editions and Licensing
	3.1.3. Design Tool Functionality
	3.1.4. Third Party Tools
	3.1.5. System Setup and Requirements

	3.2. An Outline of the Design Flow
	3.2.1. Requirements and Specification
	3.2.2. System Design
	3.2.3. Hardware Development and Testing
	3.2.4. Software Development and Testing
	3.2.5. System Integration and Testing

	3.3. SoC Design Teams
	3.4. System-Level IP-Focused Design with Vivado
	3.5. The ISE and Vivado Design Suites
	3.5.1. Features Comparison
	3.5.2. Upgrading to Vivado

	3.6. Development Boards
	3.6.1. Zynq-7000 SoC ZC702 Evaluation Kit
	3.6.2. Zynq-7000 SoC Video & Imaging Kit
	3.6.3. Zynq-7000 ZC706 Evaluation Kit
	3.6.4. ZedBoard
	3.6.5. ZYBO
	3.6.6. Third Party Boards
	OZ745 Zynq SoC Video Development Kit
	MicroZed Evaluation Kit
	The Parallella Board
	NI myRIO

	3.6.7. Accessories and Expansions
	3.6.8. Working with Development Boards

	3.7. Support and Documentation
	3.8. Chapter Review
	3.9. References

	Device Comparisons (“Why do I need Zynq?”)
	4.1. Device Selection Criteria
	4.2. Comparison A: Zynq versus FPGA
	4.2.1. MicroBlaze Processor
	Configuration
	Processing Performance
	Other Features and Factors

	4.2.2. MicroBlaze MicroController System
	4.2.3. PicoBlaze
	4.2.4. ARM Cortex-M1
	4.2.5. Other Processor Types
	Soft Processors
	Hard Processors

	4.2.6. Summary Comments

	4.3. Comparison B: Zynq versus Standard Processor
	4.3.1. Processor Operation
	Non Real-Time Operation
	Real-Time Operation

	4.3.2. Execution Profiling
	4.3.3. Summary Comments

	4.4. Comparison C: Zynq versus a Discrete FPGA-Processor Combination
	4.5. Exploiting the Zynq Architecture and Design Flow
	4.6. Chapter Review
	4.7. References

	Applications and Opportunities (“What can I do with it?”)
	5.1. An Overview of Applications
	5.1.1. Automotive
	5.1.2. Communications
	5.1.3. Defence and Aerospace
	5.1.4. Robotics, Control and Instrumentation
	5.1.5. Image and Video Processing
	5.1.6. Medical
	5.1.7. High Performance Computing (HPC)
	5.1.8. Others and Future Applications

	5.2. When Can Zynq Really Help...?
	5.3. Communications: Software Defined Radio (SDR)
	5.3.1. Trends in Wireless Communications
	5.3.2. Introducing Software Defined Radio (SDR)
	5.3.3. SDR Implementation and Enabling Technologies
	5.3.4. Cognitive Radio

	5.4. Smart Systems and Smart Networks
	5.4.1. What is a Smart System?
	5.4.2. Examples of Smart Systems
	5.4.3. Smart Networks: Communications for Smart Systems
	5.4.4. Related Concepts

	5.5. Image and Video Processing, and Computer Vision
	5.5.1. Image and Video Processing
	5.5.2. Computer Vision
	5.5.3. Levels of Abstraction
	5.5.4. Implementation of Image Processing Systems
	5.5.5. Computer Vision on Zynq Example: Road Sign Recognition

	5.6. Dynamic System-on-Chip
	5.6.1. Run Time System Flexibility
	5.6.2. Dynamic Partial Reconfiguration (DPR)
	5.6.3. DPR Application Examples
	5.6.4. Benefits of DPR

	5.7. Further Opportunities: the Zynq ‘EcoSystem’
	5.7.1. What is the Ecosystem?
	5.7.2. What is the Opportunity?

	5.8. Chapter Review
	5.9. References

	The ZedBoard
	6.1. Introducing Zed
	6.2. ZedBoard System Architecture
	6.3. The Design Flow for ZedBoard
	6.4. Getting Started with the ZedBoard
	6.4.1. What’s in the Box?
	6.4.2. Hardware Setup
	6.4.3. Programming the ZedBoard

	6.5. MicroZed
	6.6. Documentation, Tutorials and Support
	6.6.1. Documentation about the ZedBoard
	6.6.2. Demonstrations and Tutorials
	6.6.3. Online Courseware
	6.6.4. Other ZedBoard Resources and Support

	6.7. ZedBoard.org Community
	6.7.1. Community Projects
	6.7.2. Blogs
	6.7.3. Support Forums

	6.8. Chapter Review
	6.9. References

	Education, Research and Training
	7.1. Technology Trends and SoC Education
	7.2. University Teaching with Zynq
	7.2.1. Teaching with Xilinx Tools and Boards
	7.2.2. Digital Design and FPGA Teaching
	7.2.3. Computer Science
	7.2.4. Embedded Systems and SoC Design
	7.2.5. Algorithm Implementation (e.g. Signal, Image, and Video Processing)
	7.2.6. Design Reuse
	7.2.7. New and Emerging Design Methods
	7.2.8. Sensing, Robotics, and Prototyping
	7.2.9. An Example Course

	7.3. Projects and Competitions
	7.4. Academic Research
	7.5. The Xilinx University Program (XUP)
	7.5.1. Introducing XUP
	7.5.2. Software Support and Licenses
	7.5.3. XUP Development and Teaching Boards
	7.5.4. XUP Workshops and Training Materials
	7.5.5. Technical Support for Universities
	7.5.6. Eligibility
	7.5.7. Getting in Touch with XUP

	7.6. Training for Industry
	7.6.1. Courses and Authorised Training Providers
	7.6.2. Other Resources
	7.6.3. Online Videos

	7.7. Chapter Review
	7.8. References

	First Designs on Zynq
	8.1. Software Installation Guide
	8.2. Aims and Outcomes
	8.3. Overview of Exercise 1A
	8.4. Overview of Exercise 1B
	8.5. Overview of Exercise 1C
	8.6. Possible Extensions
	8.7. What Next?
	8.8. References

	PART B
	Embedded Systems and FPGAs
	9.1. What is an Embedded System?
	9.1.1. Applications
	9.1.2. Generic Embedded System Architecture

	9.2. Processors
	9.2.1. Co-processors
	9.2.2. Processor Cache
	Dynamic RAM (DRAM)
	Static RAM (SRAM)
	Level 1 (L1) Cache
	Level 2 (L2) Cache
	Level 3 (L3) Cache

	9.2.3. Execution Cycles
	Fetch Instruction
	Decode Instruction
	Execute Instruction

	9.2.4. Interrupts

	9.3. Buses
	9.3.1. System and Peripheral Buses
	System Bus
	Peripheral Bus
	Bus Bridge

	9.3.2. Bus Masters and Slaves
	9.3.3. Bus Arbitration
	9.3.4. Memory Access
	Programmable Input/Output (I/O)
	Direct Memory Access (DMA)

	9.3.5. Bus Bandwidth

	9.4. Chapter Review
	9.5. References

	Zynq System-on-Chip Design Overview
	10.1. Interfacing and Signals
	10.1.1. PS-PL AXI Interfaces
	10.1.2. PL Co-Processing Interfaces
	Accelerator Coherency Port (ACP) Interface
	ACP Usage
	ACP Limitations

	10.1.3. Interrupt Interface

	10.2. Interconnects
	10.2.1. Interconnect Features
	10.2.2. Interconnects, Masters and Slaves
	Interconnect Switches
	Interconnect Masters
	Interconnect Slaves

	10.2.3. Connectivity
	10.2.4. AXI_HP Interfaces
	10.2.5. AXI_ACP Interface
	10.2.6. AXI_GP Interfaces

	10.3. Memory
	10.3.1. Memory Interfaces
	Dynamic Memory Interface
	Static Memory Interface

	10.3.2. On-Chip Memory (OCM)
	10.3.3. Memory Map

	10.4. Interrupts
	10.4.1. Interrupt Signals
	10.4.2. Generic Interrupt Controller (GIC)
	10.4.3. Interrupt Sources
	CPU Private Peripheral Interrupts (PPI)
	Shared Peripheral Interrupts (SPI)
	Software Generated Interrupts (SGI)

	10.4.4. Interrupt Prioritisation and Handling
	Interrupt Prioritisation
	Interrupt Handling

	10.4.5. Further Reading

	10.5. Chapter Review
	10.6. References

	Zynq System-on-Chip Development
	11.1. Hardware/Software Partitioning
	11.2. Profiling
	11.3. Software Development Tools
	11.3.1. Software Tools
	11.3.2. Hardware Configuration Tools
	Vivado IP Integrator
	Xilinx Platform Studio

	11.3.3. Software Development Kit (SDK)
	11.3.4. Microprocessor Debugger
	11.3.5. Sourcery CodeBench Lite Edition for Xilinx Cortex-A9 Compiler Toolchain
	11.3.6. Logic Analysers
	11.3.7. System Generator for DSP

	11.4. Chapter Review
	11.5. References

	Next Steps in Zynq SoC Design
	12.1. Prerequisites
	12.2. Aims and Outcomes
	12.3. Overview of Exercise 2A
	12.4. Overview of Exercise 2B
	12.5. Overview of Exercise 2C
	12.6. Overview of Exercise 2D
	12.7. Possible Extensions
	12.8. What Next?

	IP Block Design
	13.1. Overview
	13.2. Industry Trends and Philosophy
	13.3. IP Core Design Methods
	13.3.1. HDL
	13.3.2. System Generator
	13.3.3. HDL Coder
	13.3.4. Vivado High-Level Synthesis
	13.3.5. Choosing the Right IP Creation Method

	13.4. Simulation and Documentation
	13.4.1. Simulation
	RTL Simulation
	System Generator
	HDL Coder
	Vivado HLS

	13.4.2. Documentation
	System Generator
	HDL Coder

	13.5. Chapter Review
	13.6. References

	Spotlight on High-Level Synthesis
	14.1. High-Level Synthesis Concepts
	14.1.1. What is High-Level Synthesis (HLS)?
	14.1.2. Motivations for High-Level Synthesis
	14.1.3. Design Metrics and Hardware Architectures

	14.2. Development of HLS Tools
	14.3. HLS Source Languages
	14.3.1. C
	14.3.2. C++
	14.3.3. SystemC
	14.3.4. Other Languages for High-Level Synthesis

	14.4. Introducing Vivado HLS
	14.4.1. What Does Vivado HLS Do?
	Algorithm Synthesis
	Interfaces I: Interface Synthesis
	Interfaces II: Manual Specification

	14.4.2. Vivado HLS Design Flow
	Inputs to the HLS Process
	Functional Verification
	High-Level Synthesis
	C/RTL Cosimulation
	Evaluation of Implementation
	Design Iterations
	RTL Export

	14.4.3. C Functional Verification and C/RTL Cosimulation
	14.4.4. Implementation Metrics and Considerations
	14.4.5. Overview of the High-Level Synthesis Process
	Extraction of Datapath and Control
	Scheduling and Binding
	Optimisations
	A Note on the RTL Output

	14.4.6. Solutions: Exploring the Design Space
	14.4.7. Vivado HLS Library Support

	14.5. HLS in the Design Flow for Zynq
	14.6. Chapter Review
	14.7. References

	Vivado HLS: A Closer Look
	15.1. Anatomy of a Vivado HLS Project
	15.2. Vivado HLS User Interfaces
	15.2.1. Graphical User Interface
	Synthesis Perspective: Project Organisation
	Synthesis Perspective: Directives Pane
	Synthesis Perspective: Synthesis Report
	Analysis Perspective

	15.2.2. Command Line Interface (CLI)

	15.3. Data Types
	15.3.1. C and C++ Native Data Types
	15.3.2. Vivado HLS Arbitrary Precision Data Types for C and C++
	Arbitrary Precision Integer Types
	Arbitrary Precision Fixed Point Types

	15.3.3. Arbitrary Precision Types for SystemC
	15.3.4. Floating Point Data Types and Operators
	15.3.5. Validation of Arbitrary Precision Models

	15.4. Interface Specification and Synthesis
	15.4.1. C/C++ Function Definition
	15.4.2. Synthesis of Port-Level Interfaces
	Port Name
	Port Direction
	Data Type and Dimension

	15.4.3. Port Interface Protocol Types
	15.4.4. Synthesis of Port Interface Protocols
	15.4.5. Block-Level Interface Ports and Protocols
	15.4.6. Interface Synthesis Directives
	Directive Types
	Further Options
	Source File or Directive File?

	15.4.7. Manual Interface Specification
	Interface Specification in SystemC
	Interface Specification in C/C++

	15.5. Algorithm Synthesis
	15.5.1. Implementation Metrics and Constraints
	Area / Resources
	Clock Period, Clock Rate, and Clock Uncertainty
	Latency
	Initiation Interval and Throughput

	15.5.2. Data Types
	15.5.3. Pipelining
	Algorithm Execution and Data Dependency
	Pipelining an Algorithm

	15.5.4. Dataflow
	15.5.5. Algorithm Case Study: Loops
	Default Loop Synthesis
	Simple Loop Architecture Variations
	Optimisation: Merging Loops
	Nested Loops
	Optimisation: Flattening Loops
	Pipelining Loops

	15.5.6. Arrays

	15.6. Design Evaluation and Optimisation
	15.6.1. Design Constraints
	15.6.2. Synthesis Directives
	15.6.3. Statistics and Reports
	15.6.4. Design Iterations and Optimisation

	15.7. Exporting from Vivado HLS
	15.7.1. Vivado IP Catalog (IP-XACT Format)
	15.7.2. System Generator for DSP
	15.7.3. Pcore for XPS

	15.8. Chapter Review
	15.9. References

	Designing With Vivado High Level Synthesis
	16.1. Prerequisites
	16.2. Aims and Outcomes
	16.3. Overview of Exercise 3A
	16.4. Overview of Exercise 3B
	16.5. Overview of Exercise 3C
	16.6. Possible Extensions
	16.7. What Next?

	IP Creation
	17.1. Aims and Outcomes
	17.2. Overview of Exercise 4A
	17.3. Overview of Exercise 4B
	17.4. Overview of Exercise 4C
	17.5. Possible Extensions
	17.6. What Next?

	IP Reuse and Integration
	18.1. Overview
	18.2. System Design — A System-Level Approach
	18.3. IP-XACT
	18.4. IP Libraries
	18.4.1. Vivado IP Catalog
	18.4.2. Third-Party
	18.4.3. Custom IP

	18.5. IP Integration
	18.5.1. IP Integrator
	18.5.2. IP Packager

	18.6. Chapter Review
	18.7. References

	AXI Interfacing
	19.1. Development of AXI
	19.2. Variations of AXI4
	19.3. AXI Architecture
	19.3.1. Address Channels
	19.3.2. Write Data Channel
	19.3.3. Read Data Channel
	19.3.4. Write Response Channel

	19.4. Examples of Applications
	19.5. AXI Transactions
	19.5.1. AXI Write-Burst Transaction
	19.5.2. AXI Read-Burst Transaction

	19.6. AXI in the Xilinx Toolflow
	19.7. Summary
	19.8. References

	Adventures with IP Integrator
	20.1. Aims and Outcomes
	20.2. Exercise 4A
	20.3. Exercise 4B
	20.4. Exercise 4C
	20.5. Possible Extensions
	20.6. What Next?

	PART C
	Introduction to Operating Systems on Zynq
	21.1. Why Use an Embedded Operating System?
	21.1.1. Reducing Time to Market
	21.1.2. Make Use of Existing Features
	21.1.3. Reduce Maintenance and Development Costs

	21.2. Choosing the Right Type of Operating System
	21.2.1. Standalone Operating Systems
	21.2.2. Real-Time Operating Systems (RTOS)
	21.2.3. Other Embedded Operating Systems
	Linux
	Android

	21.2.4. Further Considerations

	21.3. Applications
	21.4. Multi-Processor Systems
	21.5. Zynq Operating Systems
	21.5.1. Linux
	Xilinx Zynq-Linux
	Petalogix® - Petalinux
	Xillybus - Xillinux

	21.5.2. RTOS
	FreeRTOS

	21.5.3. Further Operating Systems

	21.6. Chapter Review
	21.7. References

	Linux: An Overview
	22.1. A Brief History
	22.2. Linux System Overview
	22.3. Licensing
	22.3.1. GNU General Public licence

	22.4. Development Tools and Resources
	22.4.1. Virtual Machines
	22.4.2. Version Control
	22.4.3. Git
	22.4.4. Debugging Linux

	22.5. Chapter Review
	22.6. References

	The Linux Kernel
	23.1. Linux Kernel Hierarchy
	23.2. System Call Interface
	23.3. Memory Management
	23.3.1. Virtual Memory
	23.3.2. High and Low Memory

	23.4. Process Management
	23.4.1. Process Representation
	23.4.2. Process Creation, Scheduling and Destruction

	23.5. File System
	23.5.1. Linux File Systems
	23.5.2. Virtual File System

	23.6. Architecture-Dependent Code
	23.7. Linux Device Drivers
	23.7.1. A Note on Mechanisms Vs. Policies
	23.7.2. Module/Device Classification

	23.8. Chapter Review
	23.9. References

	Linux Booting
	24.1. Overview
	24.2. Stages of the Desktop Linux Boot Process
	24.2.1. BIOS
	24.2.2. First-Stage Bootloader (FSBL)
	24.2.3. Second-Stage Bootloader (SSBL)
	24.2.4. Kernel
	24.2.5. Init

	24.3. Booting Zynq
	24.3.1. Zynq Boot Files
	The first of these files, BOOT.BIN, is the zynq boot image file. It is actually the combination of 2 compulsory files, the FSBL and SSBL executable and linkable format (.elf) files, and an optional bitstream (.bit) file. The FSBL and SSBL files, as t...

	24.3.2. Stage-0 (Boot ROM)
	24.3.3. Stage-1 (First-Stage Bootloader)
	Boot Image Format (BIF)
	Authentication Certificate
	BootGen

	24.3.4. Stage-2 (Second-Stage Bootloader)

	24.4. Chapter Review
	24.5. References

	Postscript
	Glossary
	List of Acronyms
	Index

